analyzers
Package¶
This is the module where all TVB Analyzers are hooked into the framework.
Define in __all__ attribute, modules to be introspected for finding adapters.
bct_adapters
¶
- class tvb.adapters.analyzers.bct_adapters.BaseBCT[source]¶
Bases:
ABCAdapter
Interface between Brain Connectivity Toolbox of Olaf Sporns and TVB Framework.
- get_required_disk_size(view_model)[source]¶
Abstract method to be implemented in each adapter. Should return the required memory for launching the adapter in kilo-Bytes.
- get_required_memory_size(view_model)[source]¶
Abstract method to be implemented in each adapter. Should return the required memory for launching the adapter.
- abstract launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.BaseBCTForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.bct_adapters.BaseBCTModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.bct_adapters.BaseBCTModel]¶
Attributes declared¶
connectivity : tvb.adapters.analyzers.bct_adapters.BaseBCTModel.connectivity = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- connectivity¶
Keep a GID but also link the type of DataType it should point to
- class tvb.adapters.analyzers.bct_adapters.BaseUndirected[source]¶
Bases:
BaseBCT
- abstract launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.BaseUnidirectedBCTForm[source]¶
Bases:
BaseBCTForm
- class tvb.adapters.analyzers.bct_adapters.DistanceDBIN[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.DistanceDWEI[source]¶
Bases:
DistanceDBIN
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.DistanceNETW[source]¶
Bases:
DistanceDBIN
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.DistanceRDA[source]¶
Bases:
DistanceRDM
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.DistanceRDM[source]¶
Bases:
DistanceDBIN
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.ModularityOCSM[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_adapters.ModularityOpCSMU[source]¶
Bases:
ModularityOCSM
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
bct_centrality_adapters
¶
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityEigenVector[source]¶
Bases:
BaseUndirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityKCoreness[source]¶
Bases:
BaseUndirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityKCorenessBD[source]¶
Bases:
CentralityNodeBinary
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityNodeBinary[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityNodeWeighted[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.CentralityShortcuts[source]¶
Bases:
CentralityNodeBinary
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.FlowCoefficients[source]¶
Bases:
CentralityNodeBinary
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.ParticipationCoefficient[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.ParticipationCoefficientSign[source]¶
Bases:
ParticipationCoefficient
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_centrality_adapters.SubgraphCentrality[source]¶
Bases:
CentralityNodeBinary
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
bct_clustering_adapters
¶
- class tvb.adapters.analyzers.bct_clustering_adapters.ClusteringCoefficient[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.ClusteringCoefficientBU[source]¶
Bases:
BaseUndirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.ClusteringCoefficientWD[source]¶
Bases:
ClusteringCoefficient
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.ClusteringCoefficientWU[source]¶
Bases:
BaseUndirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.TransitivityBinaryDirected[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.TransitivityBinaryUnDirected[source]¶
Bases:
BaseUndirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.TransitivityWeightedDirected[source]¶
Bases:
TransitivityBinaryDirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_clustering_adapters.TransitivityWeightedUnDirected[source]¶
Bases:
TransitivityBinaryUnDirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
bct_degree_adapters
¶
- class tvb.adapters.analyzers.bct_degree_adapters.Degree[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.DegreeIOD[source]¶
Bases:
Degree
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.DensityDirected[source]¶
Bases:
BaseBCT
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.DensityUndirected[source]¶
Bases:
DensityDirected
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.MatchingIndex[source]¶
Bases:
Degree
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.Strength[source]¶
Bases:
Degree
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.StrengthISOS[source]¶
Bases:
Strength
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
- class tvb.adapters.analyzers.bct_degree_adapters.StrengthWeights[source]¶
Bases:
Strength
- launch(view_model)[source]¶
To be implemented in each Adapter. Will contain the logic of the Adapter. Takes a ViewModel with data, dependency direction is: Adapter -> Form -> ViewModel Any returned DataType will be stored in DB, by the Framework.
- Parameters:
view_model – the data model corresponding to the current adapter
cross_correlation_adapter
¶
Adapter that uses the traits module to generate interfaces for … Analyzer.
- class tvb.adapters.analyzers.cross_correlation_adapter.CrossCorrelateAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the CrossCorrelate algorithm.
- configure(view_model: CrossCorrelateAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage.
- get_required_disk_size(view_model: CrossCorrelateAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: CrossCorrelateAdapterModel) int [source]¶
Returns the required memory to be able to run the adapter.
- launch(view_model: CrossCorrelateAdapterModel) [CrossCorrelationIndex] [source]¶
Launch algorithm and build results. Compute the node-pairwise cross-correlation of the source 4D TimeSeries represented by the index given as input.
Return a CrossCorrelationIndex. Create a CrossCorrelationH5 that contains the cross-correlation sequences for all possible combinations of the nodes.
See: http://www.scipy.org/doc/api_docs/SciPy.signal.signaltools.html#correlate
- Parameters:
view_model – the ViewModel keeping the algorithm inputs
- Returns:
the cross correlation index for the given time series
- Return type:
CrossCorrelationIndex
- class tvb.adapters.analyzers.cross_correlation_adapter.CrossCorrelateAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.cross_correlation_adapter.CrossCorrelateAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.cross_correlation_adapter.CrossCorrelateAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.cross_correlation_adapter.CrossCorrelateAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The time-series for which the cross correlation sequences are calculated.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- time_series¶
Keep a GID but also link the type of DataType it should point to
- class tvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the Pearson correlation coefficients algorithm.
- configure(view_model: PearsonCorrelationCoefficientAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage.
- get_required_disk_size(view_model: PearsonCorrelationCoefficientAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: PearsonCorrelationCoefficientAdapterModel) int [source]¶
Returns the required memory to be able to run this adapter.
- launch(view_model: PearsonCorrelationCoefficientAdapterModel) [CorrelationCoefficientsIndex] [source]¶
Launch algorithm and build results. Compute the node-pairwise pearson correlation coefficient of the given input 4D TimeSeries datatype.
The result will contain values between -1 and 1, inclusive.
- Parameters:
view_model – the ViewModel keeping the algorithm inputs
- Returns:
the correlation coefficient for the given time series
- class tvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The time-series for which the cross correlation matrices are calculated.
- t_starttvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterModel.t_start = Float(field_type=<class ‘float’>, default=0.9765625, required=True)
Time start point (ms). By default it uses the default Monitor sample period. The starting time point of a time series is not zero, but the monitor’s sample period.
- t_endtvb.adapters.analyzers.cross_correlation_adapter.PearsonCorrelationCoefficientAdapterModel.t_end = Float(field_type=<class ‘float’>, default=1000.0, required=True)
End time point (ms)
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- t_end¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- t_start¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to
fcd_adapter
¶
Adapter that uses the traits model to generate interfaces for FCD Analyzer.
- class tvb.adapters.analyzers.fcd_adapter.FCDAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.fcd_adapter.FCDAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.fcd_adapter.FCDAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.fcd_adapter.FCDAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The time-series for which the fcd matrices are calculated.
- swtvb.adapters.analyzers.fcd_adapter.FCDAdapterModel.sw = Float(field_type=<class ‘float’>, default=120000, required=True)
Length of the time window used to divided the time series. FCD matrix is calculated in the following way: the time series is divided in time window of fixed length and with an overlapping of fixed length. The data-points within each window, centered at time ti, are used to calculate FC(ti) as Pearson correlation. The ij element of the FCD matrix is calculated as the Pearson Correlation between FC(ti) and FC(tj) arranged in a vector.
- sptvb.adapters.analyzers.fcd_adapter.FCDAdapterModel.sp = Float(field_type=<class ‘float’>, default=2000, required=True)
Spanning= (time windows length)-(overlapping between two consecutive time window). FCD matrix is calculated in the following way: the time series is divided in time window of fixed length and with an overlapping of fixed length. The data-points within each window, centered at time ti, are used to calculate FC(ti) as Pearson Correlation. The ij element of the FCD matrix is calculated as the Pearson correlation between FC(ti) and FC(tj) arranged in a vector
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- sp¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- sw¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to
- class tvb.adapters.analyzers.fcd_adapter.FunctionalConnectivityDynamicsAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the Pearson CrossCorrelation algorithm.
The present class will do the following actions:
- Compute the the fcd of the timeseries; the fcd is calculated in the following way:
the time series is divided in time window of fixed length and with an overlapping of fixed length. The data-points within each window, centered at time ti, are used to calculate FC(ti) as Pearson correlation The ij element of the FCD matrix is calculated as the Pearson correlation between FC(ti) and FC(tj) -in a vector
- Apply to the fcd the spectral embedding algorithm in order to calculate epochs of stability of the fcd
(length of time during which FC matrix are high correlated).
The algorithm can produce 2 kind of results:
- case 1: the algorithm is able to identify the epochs of stability
– fcs calculated over the epochs of stability (excluded the first one = artifact, due to initial conditions) – 3 eigenvectors, associated to the 3 largest eigenvalues, of the fcs are extracted
- case 2: the algorithm is not able to identify the epochs of stability
– fc over the all time series is calculated – 3 first eigenvectors, associated to the 3 largest eigenvalues, of the fcs are extracted
- :return
fcd matrix whose values are between -1 and 1, inclusive.
- in case 1: fcd matrix segmented i.e. fcd whose values are between -1 and 1.1, inclusive.
(Value=1.1 for time not belonging to epochs of stability identified with spectral embedding algorithm) in case 2: fcd matrix segmented identical to the fcd matrix not segmented
dictionary containing the eigenvectors.
dictionary containing the eigenvalues
connectivity associated to the TimeSeriesRegions
- configure(view_model: FCDAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage
- get_required_disk_size(view_model: FCDAdapterModel) int [source]¶
Abstract method to be implemented in each adapter. Should return the required memory for launching the adapter in kilo-Bytes.
- get_required_memory_size(view_model: FCDAdapterModel) int [source]¶
Abstract method to be implemented in each adapter. Should return the required memory for launching the adapter.
- launch(view_model: FCDAdapterModel) [FcdIndex, ConnectivityMeasureIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the fcd index for the computed fcd matrix on the given time-series, with that sw and that sp
fmri_balloon_adapter
¶
Adapter that uses the traits module to generate interfaces for BalloonModel Analyzer.
- class tvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the BalloonModel algorithm.
- configure(view_model: BalloonModelAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
- get_required_disk_size(view_model: BalloonModelAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter.(in kB)
- get_required_memory_size(view_model: BalloonModelAdapterModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: BalloonModelAdapterModel) [TimeSeriesRegionIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the simulated BOLD signal
- class tvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries that represents the input neural activity
- tau_stvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.tau_s = Float(field_type=<class ‘float’>, default=1.54, required=True)
Balloon model parameter. Time of signal decay (s)
- tau_ftvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.tau_f = Float(field_type=<class ‘float’>, default=1.44, required=True)
Balloon model parameter. Time of flow-dependent elimination or feedback regulation (s). The average time blood take to traverse the venous compartment. It is the ratio of resting blood volume (V0) to resting blood flow (F0).
- neural_input_transformationtvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.neural_input_transformation = EnumAttr(field_type=<enum ‘NeuralInputTransformations’>, default=<NeuralInputTransformations.NONE: ‘none’>, required=True)
This represents the operation to perform on the state-variable(s) of the model used to generate the input TimeSeries.
none
takes the first state-variable as neural input; `` abs_diff`` is the absolute value of the derivative (first order difference) of the first state variable;sum
: sum all the state-variables of the input TimeSeries.- bold_modeltvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.bold_model = EnumAttr(field_type=<enum ‘BoldModels’>, default=<BoldModels.NONLINEAR: ‘nonlinear’>, required=True)
Select the set of equations for the BOLD model.
- RBMtvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.RBM = Attr(field_type=<class ‘bool’>, default=True, required=True)
Select classical vs revised BOLD model (CBM or RBM). Coefficients k1, k2 and k3 will be derived accordingly.
- normalize_neural_inputtvb.adapters.analyzers.fmri_balloon_adapter.BalloonModelAdapterModel.normalize_neural_input = Attr(field_type=<class ‘bool’>, default=False, required=True)
Set if the mean should be subtracted from the neural input.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- RBM¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- bold_model¶
- neural_input_transformation¶
- normalize_neural_input¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- tau_f¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- tau_s¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to
fourier_adapter
¶
Adapter that uses the traits module to generate interfaces for FFT Analyzer.
- class tvb.adapters.analyzers.fourier_adapter.FFTAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.fourier_adapter.FFTAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.fourier_adapter.FFTAdapterModel]¶
Parameters have the following meaning: - time_series: the input time series to which the fft is to be applied - segment_length: the block size which determines the frequency resolution of the resulting power spectra - window_function: windowing functions can be applied before the FFT is performed - detrend: None; specify if detrend is performed on the time series
Attributes declared¶
- time_seriestvb.adapters.analyzers.fourier_adapter.FFTAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The TimeSeries to which the FFT is to be applied.
- segment_lengthtvb.adapters.analyzers.fourier_adapter.FFTAdapterModel.segment_length = Float(field_type=<class ‘float’>, default=1000.0, required=False)
The TimeSeries can be segmented into equally sized blocks (overlapping if necessary). The segment length determines the frequency resolution of the resulting power spectra – longer windows produce finer frequency resolution.
- window_functiontvb.adapters.analyzers.fourier_adapter.FFTAdapterModel.window_function = EnumAttr(field_type=<enum ‘WindowingFunctionsEnum’>, default=<WindowingFunctionsEnum.HAMMING: ‘hamming’>, required=False)
Windowing functions can be applied before the FFT is performed. Default is None, possibilities are: ‘hamming’; ‘bartlett’; ‘blackman’; and ‘hanning’. See, numpy.<function_name>.
- detrendtvb.adapters.analyzers.fourier_adapter.FFTAdapterModel.detrend = Attr(field_type=<class ‘bool’>, default=True, required=False)
Detrending is not always appropriate. Default is True, False means no detrending is performed on the time series
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- detrend¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- segment_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to
- window_function¶
- class tvb.adapters.analyzers.fourier_adapter.FourierAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the FFT algorithm.
- configure(view_model: FFTAdapterModel) None [source]¶
Do any configuration needed before launching.
- get_required_disk_size(view_model: FFTAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: FFTAdapterModel) int [source]¶
Returns the required memory to be able to run the adapter.
- launch(view_model: FFTAdapterModel) [FourierSpectrumIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the fourier spectrum for the specified time series
ica_adapter
¶
Adapter that uses the traits module to generate interfaces for ICA Analyzer.
- class tvb.adapters.analyzers.ica_adapter.ICAAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the ICA algorithm.
- configure(view_model: ICAAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage. Also create the algorithm instance.
- get_required_disk_size(view_model: ICAAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: ICAAdapterModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: ICAAdapterModel) [IndependentComponentsIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the ica index for the specified time series
- class tvb.adapters.analyzers.ica_adapter.ICAAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.ica_adapter.ICAAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.ica_adapter.ICAAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.ica_adapter.ICAAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries to which the ICA is to be applied.
- n_componentstvb.adapters.analyzers.ica_adapter.ICAAdapterModel.n_components = Int(field_type=<class ‘int’>, default=None, required=False)
Number of principal components to unmix.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- n_components¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- time_series¶
Keep a GID but also link the type of DataType it should point to
metrics_group_timeseries
¶
Adapter that uses the traits module to generate interfaces for group of Analyzer used to calculate a single measure for TimeSeries.
- class tvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for exposing as a group the measure algorithm.
- configure(view_model: TimeseriesMetricsAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage.
- get_required_disk_size(view_model: TimeseriesMetricsAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: TimeseriesMetricsAdapterModel) int [source]¶
Return the required memory to run this algorithm.
- input_shape = ()¶
- launch(view_model: TimeseriesMetricsAdapterModel) [DatatypeMeasureIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs
- class tvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The TimeSeries for which the metric(s) will be computed.
- algorithmstvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel.algorithms = List(of=<class ‘str’>, default=(), required=True)
The selected algorithms will all be applied on the input TimeSeries
- start_pointtvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel.start_point = Float(field_type=<class ‘float’>, default=500.0, required=False)
The start point determines how many points of the TimeSeries will be discarded before computing the metric. By default it drops the first 500 ms.
- segmenttvb.adapters.analyzers.metrics_group_timeseries.TimeseriesMetricsAdapterModel.segment = Int(field_type=<class ‘int’>, default=4, required=False)
Divide the input time-series into discrete equally sized sequences and use the last segment to compute the metric. It is only used when the start point is larger than the time-series length.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- algorithms¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- segment¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- start_point¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to
node_coherence_adapter
¶
Adapter that uses the traits module to generate interfaces for FFT Analyzer.
- class tvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the NodeCoherence algorithm.
- configure(view_model: NodeCoherenceModel) None [source]¶
Store the input shape to be later used to estimate memory usage.
- get_required_disk_size(view_model: NodeCoherenceModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: NodeCoherenceModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: NodeCoherenceModel) [CoherenceSpectrumIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the node coherence for the specified time series
- class tvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries to which the Cross Coherence is to be applied.
- nffttvb.adapters.analyzers.node_coherence_adapter.NodeCoherenceModel.nfft = Int(field_type=<class ‘int’>, default=256, required=True)
Should be a power of 2…
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- nfft¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- time_series¶
Keep a GID but also link the type of DataType it should point to
node_complex_coherence_adapter
¶
Adapter that uses the traits module to generate interfaces for FFT Analyzer.
- class tvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the NodeComplexCoherence algorithm.
- configure(view_model: NodeComplexCoherenceModel) None [source]¶
Do any configuration needed before launching
- get_required_disk_size(view_model: NodeComplexCoherenceModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: NodeComplexCoherenceModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: NodeComplexCoherenceModel) [ComplexCoherenceSpectrumIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the complex coherence for the specified time series
- class tvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries for which the CrossCoherence and ComplexCoherence is to be computed.
- epoch_lengthtvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.epoch_length = Float(field_type=<class ‘float’>, default=1000.0, required=False)
In general for lengthy EEG recordings (~30 min), the timeseries are divided into equally sized segments (~ 20-40s). These contain the event that is to be characterized by means of the cross coherence. Additionally each epoch block will be further divided into segments to which the FFT will be applied.
- segment_lengthtvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.segment_length = Float(field_type=<class ‘float’>, default=500.0, required=False)
The timeseries can be segmented into equally sized blocks (overlapping if necessary). The segment length determines the frequency resolution of the resulting power spectra – longer windows produce finer frequency resolution.
- segment_shifttvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.segment_shift = Float(field_type=<class ‘float’>, default=250.0, required=False)
Time length by which neighboring segments are shifted. e.g. segment shift = segment_length / 2 means 50% overlapping segments.
- window_functiontvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.window_function = Attr(field_type=<class ‘str’>, default=’hanning’, required=False)
Windowing functions can be applied before the FFT is performed. Default is hanning, possibilities are: ‘hamming’; ‘bartlett’; ‘blackman’; and ‘hanning’. See, numpy.<function_name>.
- average_segmentstvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.average_segments = Attr(field_type=<class ‘bool’>, default=True, required=False)
Flag. If True, compute the mean Cross Spectrum across segments.
- subtract_epoch_averagetvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.subtract_epoch_average = Attr(field_type=<class ‘bool’>, default=True, required=False)
Flag. If True and if the number of epochs is > 1, you can optionally subtract the mean across epochs before computing the complex coherence.
- zeropadtvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.zeropad = Int(field_type=<class ‘int’>, default=0, required=False)
Adds n zeros at the end of each segment and at the end of window_function. It is not yet functional.
- detrend_tstvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.detrend_ts = Attr(field_type=<class ‘bool’>, default=False, required=False)
Flag. If True removes linear trend along the time dimension before applying FFT.
- max_freqtvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.max_freq = Float(field_type=<class ‘float’>, default=1024.0, required=False)
Maximum frequency points (e.g. 32., 64., 128.) represented in the output. Default is segment_length / 2 + 1.
- npattvb.adapters.analyzers.node_complex_coherence_adapter.NodeComplexCoherenceModel.npat = Float(field_type=<class ‘float’>, default=1.0, required=False)
This attribute appears to be related to an input projection matrix… Which is not yet implemented
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- average_segments¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- detrend_ts¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- epoch_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- max_freq¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- npat¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- segment_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- segment_shift¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- subtract_epoch_average¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- time_series¶
Keep a GID but also link the type of DataType it should point to
- window_function¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- zeropad¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
node_covariance_adapter
¶
Adapter that uses the traits module to generate interfaces for FFT Analyzer.
- class tvb.adapters.analyzers.node_covariance_adapter.NodeCovarianceAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the NodeCovariance algorithm.
- configure(view_model: NodeCovarianceAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage.
- get_required_disk_size(view_model: NodeCovarianceAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter ( in kB).
- get_required_memory_size(view_model: NodeCovarianceAdapterModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: NodeCovarianceAdapterModel) [CovarianceIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the CovarianceIndex built with the given time_series index as source
- class tvb.adapters.analyzers.node_covariance_adapter.NodeCovarianceAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.node_covariance_adapter.NodeCovarianceAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.node_covariance_adapter.NodeCovarianceAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.node_covariance_adapter.NodeCovarianceAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries to which the NodeCovariance is to be applied.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- time_series¶
Keep a GID but also link the type of DataType it should point to
pca_adapter
¶
Adapter that uses the traits module to generate interfaces for FFT Analyzer.
- class tvb.adapters.analyzers.pca_adapter.PCAAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the PCA algorithm.
- configure(view_model: PCAAdapterModel) None [source]¶
Store the input shape to be later used to estimate memory usage
- get_required_disk_size(view_model: PCAAdapterModel) int [source]¶
Returns the required disk size to be able to run the adapter (in kB).
- get_required_memory_size(view_model: PCAAdapterModel) int [source]¶
Return the required memory to run this algorithm.
- launch(view_model: PCAAdapterModel) [PrincipalComponentsIndex] [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the PrincipalComponentsIndex object built with the given timeseries as source
- class tvb.adapters.analyzers.pca_adapter.PCAAdapterForm[source]¶
Bases:
ABCAdapterForm
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.pca_adapter.PCAAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.pca_adapter.PCAAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.pca_adapter.PCAAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries to which the PCA is to be applied. NOTE: The TimeSeries must be longer(more time-points) than the number of nodes – Mostly a problem for surface times-series, which, if sampled at 1024Hz, would need to be greater than 16 seconds long.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- time_series¶
Keep a GID but also link the type of DataType it should point to
wavelet_adapter
¶
Adapter that uses the traits module to generate interfaces for ContinuousWaveletTransform Analyzer.
- class tvb.adapters.analyzers.wavelet_adapter.ContinuousWaveletTransformAdapter[source]¶
Bases:
ABCAdapter
TVB adapter for calling the ContinuousWaveletTransform algorithm.
- get_required_disk_size(view_model)[source]¶
Returns the required disk size to be able to run the adapter.(in kB)
- launch(view_model: WaveletAdapterModel) WaveletCoefficientsIndex [source]¶
Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the wavelet coefficients for the specified time series
- class tvb.adapters.analyzers.wavelet_adapter.ContinuousWaveletTransformAdapterForm[source]¶
Bases:
ABCAdapterForm
- fill_trait(datatype)[source]¶
Copies the value of the TraitFields to the corresponding Attr-ibutes of the given trait instance Note that FormFields are not TraitFields, so this does not work recursively Override to fill in sub-forms
- static get_filters()[source]¶
Should keep filters for the required_datatype. These filters are stored in DB at introspection time. :return: FilterChain
- static get_input_name()[source]¶
The Form’s input name for the required_datatype. Will be stored in DB at introspection time. :return: str
- class tvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel(**kwargs)[source]¶
Bases:
ViewModel
Traited class [tvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel]¶
Attributes declared¶
- time_seriestvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.time_series = DataTypeGidAttr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
The timeseries to which the wavelet is to be applied.
- mothertvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.mother = Attr(field_type=<class ‘str’>, default=’morlet’, required=True)
The mother wavelet function used in the transform. Default is ‘morlet’, possibilities are: ‘morlet’…
- sample_periodtvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.sample_period = Float(field_type=<class ‘float’>, default=7.8125, required=True)
The sampling period of the computed wavelet spectrum. NOTE: This should be an integral multiple of the of the sampling period of the source time series, otherwise the actual resulting sample period will be the first correct value below that requested.
- frequenciestvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.frequencies = Attr(field_type=<class ‘tvb.basic.neotraits._attr.Range’>, default=Range(lo=0.008, hi=0.06, step=0.002), required=True)
The frequency resolution and range returned. Requested frequencies are converted internally into appropriate scales.
- normalisationtvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.normalisation = Attr(field_type=<class ‘str’>, default=’energy’, required=True)
The type of normalisation for the resulting wavet spectrum. Default is ‘energy’, options are: ‘energy’; ‘gabor’.
- q_ratiotvb.adapters.analyzers.wavelet_adapter.WaveletAdapterModel.q_ratio = Float(field_type=<class ‘float’>, default=5.0, required=True)
NFC. Must be greater than 5. Ratios of the center frequencies to bandwidths.
operation_group_gid : tvb.core.neotraits.view_model.ViewModel.operation_group_gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=False)
ranges : tvb.core.neotraits.view_model.ViewModel.ranges = Attr(field_type=<class ‘str’>, default=None, required=False)
range_values : tvb.core.neotraits.view_model.ViewModel.range_values = Attr(field_type=<class ‘str’>, default=None, required=False)
is_metric_operation : tvb.core.neotraits.view_model.ViewModel.is_metric_operation = Attr(field_type=<class ‘bool’>, default=False, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- frequencies¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- mother¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- normalisation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- q_ratio¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- sample_period¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- time_series¶
Keep a GID but also link the type of DataType it should point to