Source code for tvb.adapters.analyzers.ica_adapter

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and 
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#

"""
Adapter that uses the traits module to generate interfaces for ICA Analyzer.

.. moduleauthor:: Paula Sanz Leon

"""

import uuid

import numpy
from tvb.adapters.datatypes.db.mode_decompositions import IndependentComponentsIndex
from tvb.adapters.datatypes.db.time_series import TimeSeriesIndex
from tvb.adapters.datatypes.h5.mode_decompositions_h5 import IndependentComponentsH5
from tvb.analyzers.ica import compute_ica_decomposition
from tvb.basic.neotraits.api import Int
from tvb.core.adapters.abcadapter import ABCAdapterForm, ABCAdapter
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.neocom import h5
from tvb.core.neotraits.forms import TraitDataTypeSelectField, IntField
from tvb.core.neotraits.view_model import ViewModel, DataTypeGidAttr
from tvb.datatypes.time_series import TimeSeries


[docs]class ICAAdapterModel(ViewModel): time_series = DataTypeGidAttr( linked_datatype=TimeSeries, label="Time Series", required=True, doc="The timeseries to which the ICA is to be applied." ) n_components = Int( label="Number of principal components to unmix.", required=False, default=None, doc="Number of principal components to unmix.")
[docs]class ICAAdapterForm(ABCAdapterForm): def __init__(self): super(ICAAdapterForm, self).__init__() self.time_series = TraitDataTypeSelectField(ICAAdapterModel.time_series, name='time_series', conditions=self.get_filters(), has_all_option=True) self.n_components = IntField(ICAAdapterModel.n_components)
[docs] @staticmethod def get_view_model(): return ICAAdapterModel
[docs] @staticmethod def get_required_datatype(): return TimeSeriesIndex
[docs] @staticmethod def get_filters(): return FilterChain(fields=[FilterChain.datatype + '.data_ndim'], operations=["=="], values=[4])
[docs] @staticmethod def get_input_name(): return "time_series"
[docs]class ICAAdapter(ABCAdapter): """ TVB adapter for calling the ICA algorithm. """ _ui_name = "Independent Component Analysis" _ui_description = "ICA for a TimeSeries input DataType." _ui_subsection = "ica"
[docs] def get_form_class(self): return ICAAdapterForm
[docs] def get_output(self): return [IndependentComponentsIndex]
[docs] def configure(self, view_model): # type: (ICAAdapterModel) -> None """ Store the input shape to be later used to estimate memory usage. Also create the algorithm instance. """ self.input_time_series_index = self.load_entity_by_gid(view_model.time_series) self.input_shape = (self.input_time_series_index.data_length_1d, self.input_time_series_index.data_length_2d, self.input_time_series_index.data_length_3d, self.input_time_series_index.data_length_4d) self.log.debug("Time series shape is %s" % str(self.input_shape)) self.log.debug("Provided number of components is %s" % view_model.n_components) if view_model.n_components is None: view_model.n_components = self.input_time_series_index.data_length_3d
[docs] def get_required_memory_size(self, view_model): # type: (ICAAdapterModel) -> int """ Return the required memory to run this algorithm. """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) input_size = numpy.prod(used_shape) * 8.0 output_size = self.result_size(self.input_shape, view_model.n_components) return input_size + output_size
[docs] def get_required_disk_size(self, view_model): # type: (ICAAdapterModel) -> int """ Returns the required disk size to be able to run the adapter (in kB). """ used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3]) return self.array_size2kb(self.result_size(used_shape, view_model.n_components))
[docs] def launch(self, view_model): # type: (ICAAdapterModel) -> [IndependentComponentsIndex] """ Launch algorithm and build results. :param view_model: the ViewModel keeping the algorithm inputs :return: the ica index for the specified time series """ # --------------------- Prepare result entities ---------------------## ica_index = IndependentComponentsIndex() result_path = self.path_for(IndependentComponentsH5, ica_index.gid) ica_h5 = IndependentComponentsH5(path=result_path) # ------------- NOTE: Assumes 4D, Simulator timeSeries. --------------## time_series_h5 = h5.h5_file_for_index(self.input_time_series_index) input_shape = time_series_h5.data.shape node_slice = [slice(input_shape[0]), None, slice(input_shape[2]), slice(input_shape[3])] # ---------- Iterate over slices and compose final result ------------## small_ts = TimeSeries() for var in range(input_shape[1]): node_slice[1] = slice(var, var + 1) small_ts.data = time_series_h5.read_data_slice(tuple(node_slice)) partial_ica = compute_ica_decomposition(small_ts, view_model.n_components) ica_h5.write_data_slice(partial_ica) time_series_h5.close() partial_ica.source.gid = view_model.time_series partial_ica.gid = uuid.UUID(ica_index.gid) ica_h5.store(partial_ica, scalars_only=True) ica_h5.close() ica_index.fill_from_has_traits(partial_ica) return ica_index
[docs] @staticmethod def result_shape(input_shape, n_components): """Returns the shape of the mixing matrix.""" n = n_components or input_shape[2] return n, n, input_shape[1], input_shape[3]
[docs] def result_size(self, input_shape, n_components): """Returns the storage size in bytes of the mixing matrix of the ICA analysis, assuming 64-bit float.""" return numpy.prod(self.result_shape(input_shape, n_components)) * 8