# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
Adapter that uses the traits module to generate interfaces for ICA Analyzer.
.. moduleauthor:: Paula Sanz Leon
"""
import uuid
import numpy
from tvb.adapters.datatypes.db.mode_decompositions import IndependentComponentsIndex
from tvb.adapters.datatypes.db.time_series import TimeSeriesIndex
from tvb.adapters.datatypes.h5.mode_decompositions_h5 import IndependentComponentsH5
from tvb.analyzers.ica import compute_ica_decomposition
from tvb.basic.neotraits.api import Int
from tvb.core.adapters.abcadapter import ABCAdapterForm, ABCAdapter
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.neocom import h5
from tvb.core.neotraits.forms import TraitDataTypeSelectField, IntField
from tvb.core.neotraits.view_model import ViewModel, DataTypeGidAttr
from tvb.datatypes.time_series import TimeSeries
[docs]class ICAAdapterModel(ViewModel):
time_series = DataTypeGidAttr(
linked_datatype=TimeSeries,
label="Time Series",
required=True,
doc="The timeseries to which the ICA is to be applied."
)
n_components = Int(
label="Number of principal components to unmix.",
required=False,
default=None,
doc="Number of principal components to unmix.")
[docs]class ICAAdapter(ABCAdapter):
""" TVB adapter for calling the ICA algorithm. """
_ui_name = "Independent Component Analysis"
_ui_description = "ICA for a TimeSeries input DataType."
_ui_subsection = "ica"
[docs] def get_output(self):
return [IndependentComponentsIndex]
[docs] def get_required_memory_size(self, view_model):
# type: (ICAAdapterModel) -> int
"""
Return the required memory to run this algorithm.
"""
used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3])
input_size = numpy.prod(used_shape) * 8.0
output_size = self.result_size(self.input_shape, view_model.n_components)
return input_size + output_size
[docs] def get_required_disk_size(self, view_model):
# type: (ICAAdapterModel) -> int
"""
Returns the required disk size to be able to run the adapter (in kB).
"""
used_shape = (self.input_shape[0], 1, self.input_shape[2], self.input_shape[3])
return self.array_size2kb(self.result_size(used_shape, view_model.n_components))
[docs] def launch(self, view_model):
# type: (ICAAdapterModel) -> [IndependentComponentsIndex]
"""
Launch algorithm and build results.
:param view_model: the ViewModel keeping the algorithm inputs
:return: the ica index for the specified time series
"""
# --------------------- Prepare result entities ---------------------##
ica_index = IndependentComponentsIndex()
result_path = self.path_for(IndependentComponentsH5, ica_index.gid)
ica_h5 = IndependentComponentsH5(path=result_path)
# ------------- NOTE: Assumes 4D, Simulator timeSeries. --------------##
time_series_h5 = h5.h5_file_for_index(self.input_time_series_index)
input_shape = time_series_h5.data.shape
node_slice = [slice(input_shape[0]), None, slice(input_shape[2]), slice(input_shape[3])]
# ---------- Iterate over slices and compose final result ------------##
small_ts = TimeSeries()
for var in range(input_shape[1]):
node_slice[1] = slice(var, var + 1)
small_ts.data = time_series_h5.read_data_slice(tuple(node_slice))
partial_ica = compute_ica_decomposition(small_ts, view_model.n_components)
ica_h5.write_data_slice(partial_ica)
time_series_h5.close()
partial_ica.source.gid = view_model.time_series
partial_ica.gid = uuid.UUID(ica_index.gid)
ica_h5.store(partial_ica, scalars_only=True)
ica_h5.close()
ica_index.fill_from_has_traits(partial_ica)
return ica_index
[docs] @staticmethod
def result_shape(input_shape, n_components):
"""Returns the shape of the mixing matrix."""
n = n_components or input_shape[2]
return n, n, input_shape[1], input_shape[3]
[docs] def result_size(self, input_shape, n_components):
"""Returns the storage size in bytes of the mixing matrix of the ICA analysis, assuming 64-bit float."""
return numpy.prod(self.result_shape(input_shape, n_components)) * 8