Source code for tvb.adapters.analyzers.metrics_group_timeseries
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
Adapter that uses the traits module to generate interfaces for group of
Analyzer used to calculate a single measure for TimeSeries.
.. moduleauthor:: Paula Sanz Leon <paula@tvb.invalid>
.. moduleauthor:: Bogdan Neacsa <bogdan.neacsa@codemart.ro>
.. moduleauthor:: Stuart A. Knock <Stuart@tvb.invalid>
.. moduleauthor:: Lia Domide <lia.domide@codemart.ro>
"""
import numpy
from tvb.adapters.datatypes.db.mapped_value import DatatypeMeasureIndex
from tvb.adapters.datatypes.db.time_series import TimeSeriesIndex
from tvb.basic.neotraits.api import Int, Float
from tvb.basic.neotraits.api import List
from tvb.config import ALGORITHMS
from tvb.core.adapters.abcadapter import ABCAdapterForm, ABCAdapter
from tvb.core.entities.file.simulator.datatype_measure_h5 import DatatypeMeasure
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.neocom import h5
from tvb.core.neotraits.forms import TraitDataTypeSelectField, MultiSelectField, FloatField, IntField
from tvb.core.neotraits.view_model import ViewModel, DataTypeGidAttr
from tvb.datatypes.time_series import TimeSeries
[docs]class TimeseriesMetricsAdapterModel(ViewModel):
time_series = DataTypeGidAttr(
linked_datatype=TimeSeries,
label="Time Series",
required=True,
doc="The TimeSeries for which the metric(s) will be computed."
)
algorithms = List(
of=str,
choices=tuple(ALGORITHMS.keys()),
label='Selected metrics to be applied',
doc='The selected algorithms will all be applied on the input TimeSeries'
)
start_point = Float(
label="Start point (ms)",
default=500.0,
required=False,
doc=""" The start point determines how many points of the TimeSeries will
be discarded before computing the metric. By default it drops the
first 500 ms.""")
segment = Int(
label="Segmentation factor",
default=4,
required=False,
doc=""" Divide the input time-series into discrete equally sized sequences and
use the last segment to compute the metric. It is only used when
the start point is larger than the time-series length.""")
[docs]class TimeseriesMetricsAdapter(ABCAdapter):
"""
TVB adapter for exposing as a group the measure algorithm.
"""
_ui_name = "TimeSeries Metrics"
_ui_description = "Compute a single number for a TimeSeries input DataType."
_ui_subsection = "timeseries"
input_shape = ()
[docs] def get_output(self):
return [DatatypeMeasureIndex]
[docs] def get_required_memory_size(self, view_model):
# type: (TimeseriesMetricsAdapterModel) -> int
"""
Return the required memory to run this algorithm.
"""
input_size = numpy.prod(self.input_shape) * 8.0
return input_size
[docs] def get_required_disk_size(self, view_model):
# type: (TimeseriesMetricsAdapterModel) -> int
"""
Returns the required disk size to be able to run the adapter (in kB).
"""
return 0
[docs] def launch(self, view_model):
# type: (TimeseriesMetricsAdapterModel) -> [DatatypeMeasureIndex]
"""
Launch algorithm and build results.
:param view_model: the ViewModel keeping the algorithm inputs
"""
algorithms = view_model.algorithms
if algorithms is None or len(algorithms) == 0:
algorithms = list(ALGORITHMS)
self.log.debug("time_series shape is %s" % str(self.input_shape))
dt_timeseries = self.load_traited_by_gid(self.input_time_series_index.gid)
metrics_results = {}
for algorithm_name in algorithms:
algorithm_func = ALGORITHMS[algorithm_name]
# Validate that current algorithm's filter is valid.
algorithm_filter = TimeseriesMetricsAdapterForm.get_extra_algorithm_filters().get(algorithm_name)
if algorithm_filter is not None \
and not algorithm_filter.get_python_filter_equivalent(self.input_time_series_index):
self.log.warning('Measure algorithm will not be computed because of incompatibility on input. '
'Filters failed on algo: ' + str(algorithm_name))
continue
else:
self.log.debug("Applying measure: " + str(algorithm_name))
unstored_result = algorithm_func({'time_series': dt_timeseries, 'start_point': view_model.start_point,
'segment': view_model.segment})
# ----------------- Prepare a Float object(s) for result ----------------##
if isinstance(unstored_result, dict):
metrics_results.update(unstored_result)
else:
metrics_results[algorithm_name] = unstored_result
dt_metric = DatatypeMeasure(analyzed_datatype=dt_timeseries, metrics=metrics_results)
result = self.store_complete(dt_metric)
return result