datatypes
Package¶
TVB DataTypes, as a dictionary between multiple algorithms.
connectivity
¶
The Connectivity datatype.
- class tvb.datatypes.connectivity.Connectivity(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.connectivity.Connectivity]¶
Attributes declared¶
- region_labelstvb.datatypes.connectivity.Connectivity.region_labels = NArray(label=’Region labels’, dtype=<U128, default=None, dim_names=(), ndim=None, required=True)
Short strings, ‘labels’, for the regions represented by the connectivity matrix.
- weightstvb.datatypes.connectivity.Connectivity.weights = NArray(label=’Connection strengths’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
Matrix of values representing the strength of connections between regions, arbitrary units.
- undirectedtvb.datatypes.connectivity.Connectivity.undirected = Attr(field_type=<class ‘bool’>, default=False, required=False)
1, when the weights matrix is square and symmetric over the main diagonal, 0 when directed graph.
- tract_lengthstvb.datatypes.connectivity.Connectivity.tract_lengths = NArray(label=’Tract lengths’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
The length of myelinated fibre tracts between regions. If not provided Euclidean distance between region centres is used.
- speedtvb.datatypes.connectivity.Connectivity.speed = NArray(label=’Conduction speed’, dtype=float64, default=array([3.]), dim_names=(), ndim=None, required=True)
A single number or matrix of conduction speeds for the myelinated fibre tracts between regions.
- centrestvb.datatypes.connectivity.Connectivity.centres = NArray(label=’Region centres’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying the location of the centre of each region.
- corticaltvb.datatypes.connectivity.Connectivity.cortical = NArray(label=’Cortical’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
A boolean vector specifying whether or not a region is part of the cortex.
- hemispherestvb.datatypes.connectivity.Connectivity.hemispheres = NArray(label=’Hemispheres (True for Right and False for Left Hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
A boolean vector specifying whether or not a region is part of the right hemisphere
- orientationstvb.datatypes.connectivity.Connectivity.orientations = NArray(label=’Average region orientation’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
Unit vectors of the average orientation of the regions represented in the connectivity matrix. NOTE: Unknown data should be zeros.
- areastvb.datatypes.connectivity.Connectivity.areas = NArray(label=’Area of regions’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
Estimated area represented by the regions in the connectivity matrix. NOTE: Unknown data should be zeros.
- idelaystvb.datatypes.connectivity.Connectivity.idelays = NArray(label=’Conduction delay indices’, dtype=int64, default=None, dim_names=(), ndim=None, required=False)
An array of time delays between regions in integration steps.
- delaystvb.datatypes.connectivity.Connectivity.delays = NArray(label=’Conduction delay’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
Matrix of time delays between regions in physical units, setting conduction speed automatically combines with tract lengths to update this matrix, i.e. don’t try and change it manually.
- number_of_regionstvb.datatypes.connectivity.Connectivity.number_of_regions = Int(field_type=<class ‘int’>, default=0, required=True)
The number of regions represented in this Connectivity
- number_of_connectionstvb.datatypes.connectivity.Connectivity.number_of_connections = Int(field_type=<class ‘int’>, default=0, required=True)
The number of non-zero entries represented in this Connectivity
parent_connectivity : tvb.datatypes.connectivity.Connectivity.parent_connectivity = Attr(field_type=<class ‘str’>, default=None, required=False)
saved_selection : tvb.datatypes.connectivity.Connectivity.saved_selection = List(of=<class ‘int’>, default=(), required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- areas¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property binarized_weights¶
- Returns:
a matrix of he same size as weights, with 1 where weight > 0, and 0 in rest
- centres¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- centres_annular(number_of_regions=4, max_radius=77.0, min_radius=13.0, mu=3.141592653589793, kappa=0.5235987755982988)[source]¶
The nodes are lying inside an annulus.
- centres_cubic(number_of_regions=4, max_radius=42.0, flat=False)[source]¶
The nodes are positioined in a 3D grid inside the cube centred at the origin and with edges parallel to the axes, with an edge length of 2*max_radius.
- centres_spherical(number_of_regions=4, max_radius=42.0, flat=False)[source]¶
The nodes positions are distributed on a sphere. See: http://mathworld.wolfram.com/SphericalCoordinates.html
If flat is true, then theta=0.0, the nodes are lying inside a circle.
r : radial theta: azimuthal polar: phi
- centres_toroidal(number_of_regions=4, max_radius=77.0, min_radius=13.0, mu=3.141592653589793, kappa=0.5235987755982988)[source]¶
The nodes are lying on a torus. See: http://mathworld.wolfram.com/Torus.html
- compute_tract_lengths()[source]¶
If no tract lengths data are available, this can be used to calculate the Euclidean distance between region centres to use as a proxy.
- configure()[source]¶
Invoke the compute methods for computable attributes that haven’t been set during initialization.
- cortical¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- delays¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- classmethod from_bytes_stream(bytes_stream, content_type='.zip')[source]¶
Construct a Connectivity from a stream of bytes.
- generate_surrogate_connectivity(number_of_regions, motif='chain', undirected=True, these_centres='spherical')[source]¶
This one generates some defaults. For more specific motifs, generate invoking each method separetly.
- property hemisphere_order_indices¶
A sequence of indices of rows/colums. These permute rows/columns so that the first half would belong to the first hemisphere If there is no hemisphere information returns the identity permutation
- hemispheres¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property horizon¶
The horizon is the maximum number of steps required in memory for simulation.
- idelays¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- is_right_hemisphere(idx)[source]¶
- Parameters:
idx – Region IDX
- Returns:
True when hemispheres information is present and it shows that the current node is in the right
hemisphere. When hemispheres info is not present, return True for the second half of the indices and False otherwise.
- motif_all_to_all(number_of_regions=4, max_radius=42.0)[source]¶
Generates an all-to-all closed unweighted undirected graph with equidistant nodes. Self-connections are not included.
- motif_chain_directed(number_of_regions=4, max_radius=42.0, return_type=None)[source]¶
Generates a closed unweighted directed graph with equidistant nodes. Depending on the centres it could be a box or a ring.
- motif_chain_undirected(number_of_regions=4, max_radius=42.0)[source]¶
Generates a closed unweighted undirected graph with equidistant nodes. Depending on the centres it could be a box or a ring.
- motif_linear_directed(number_of_regions=4, max_radius=100.0, return_type=None)[source]¶
Generates a linear (open chain) unweighted directed graph with equidistant nodes.
- motif_linear_undirected(number_of_regions=4, max_radius=42.0)[source]¶
Generates a linear (open chain) unweighted undirected graph with equidistant nodes.
- number_of_connections¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- number_of_regions¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- property ordered_centres¶
Similar to :method:`ordered_weights`
- property ordered_labels¶
Similar to
ordered_weights()
- property ordered_tracts¶
Similar to
ordered_weights()
- property ordered_weights¶
This view of the weights matrix lists all left hemisphere nodes before the right ones. It is used by viewers of the connectivity.
- orientations¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- parent_connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- region_labels¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- saved_selection¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- property saved_selection_labels¶
Taking the entity field saved_selection, convert indexes in that array into labels.
- scaled_weights(mode='tract')[source]¶
Scale the connection strengths (weights) and return the scaled matrix. Three simple types of scaling are supported. The
scaling_mode
is one of the following:- ‘tract’: Scale by a value such that the maximum absolute value of a single
connection is 1.0. (Global scaling)
- ‘region’: Scale by a value such that the maximum absolute value of the
cumulative input to any region is 1.0. (Global-wise scaling)
None: does nothing.
- NOTE: Currently multiple ‘tract’ and/or ‘region’ scalings without
intermediate ‘none’ scaling mode destroy the ability to recover the original un-scaled weights matrix.
- set_idelays(dt)[source]¶
Convert the time delays between regions in physical units into an array of linear indices into the simulator’s history attribute.
- args:
dt (float64)
: Length of integration time step…- Updates attribute:
idelays (numpy.array)
: Transmission delay between brain regions in integration steps.
- set_tract_lengths(tract_lengths, expected_number_of_nodes)[source]¶
Fill and check tracts. Allow empty files for tracts, they will be computed by tvb-library.
- speed¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property subcortical_indices¶
- summary_info()[source]¶
A more structured __str__ A 2 column table represented as a dict of str->str The default __str__ and html representations of this object are derived from this table. Override this method and return such a table filled with instance information that informs the user about your instance
- tract_lengths¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- transform_binarize_matrix()[source]¶
Transforms the weights matrix into a binary (unweighted) matrix
- transform_remove_self_connections()[source]¶
Remove the values from the main diagonal (self-connections)
- try_compute_hemispheres()[source]¶
If all region labels are prefixed with L or R, then compute hemisphere side with that.
- undirected¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- unmapped_indices(region_mapping)[source]¶
Compute vector of indices of regions in connectivity which are not in the given region mapping.
- weights¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
cortex
¶
- class tvb.datatypes.cortex.Cortex(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.cortex.Cortex]¶
Wrapper Class to gather necessary entities for a surface-based simulation. To be used when preparing a simulation launch.
Attributes declared¶
- local_connectivitytvb.datatypes.cortex.Cortex.local_connectivity = Attr(field_type=<class ‘tvb.datatypes.local_connectivity.LocalConnectivity’>, default=None, required=False)
Define the interaction between neighboring network nodes. This is implicitly integrated in the definition of a given surface as an excitatory mean coupling of directly adjacent neighbors to the first state variable of each population model (since these typically represent the mean-neural membrane voltage). This coupling is instantaneous (no time delays).
- region_mapping_datatvb.datatypes.cortex.Cortex.region_mapping_data = Attr(field_type=<class ‘tvb.datatypes.region_mapping.RegionMapping’>, default=None, required=True)
An index vector of length equal to the number_of_vertices + the number of non-cortical regions, with values that index into an associated connectivity matrix.
- coupling_strengthtvb.datatypes.cortex.Cortex.coupling_strength = NArray(label=’Local coupling strength’, dtype=float64, default=array([1.]), dim_names=(), ndim=None, required=True)
A factor that rescales local connectivity strengths.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure()[source]¶
Invoke the compute methods for computable attributes that haven’t been set during initialisation.
- coupling_strength¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- classmethod from_file(source_file='cortex_16384.zip', region_mapping_file='regionMapping_16k_76.txt', local_connectivity_file=None)[source]¶
- local_connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property number_of_triangles¶
Define shortcut for retrieving the number of triangles of the surface held by a RegionMapping.
- property number_of_vertices¶
Define shortcut for retrieving the number of vertices of the surface held by a RegionMapping.
- prepare_local_coupling(number_of_nodes)[source]¶
Prepare the concrete local coupling matrix used for simulation.
- property region_mapping¶
Generate a full region mapping vector.
- region_mapping_data¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property surface¶
Define shortcut for retrieving the surface held by a RegionMapping.
- property triangles¶
Define shortcut for retrieving the triangles of the surface held by a RegionMapping.
- property vertex_normals¶
Define shortcut for retrieving the vertex_normals of the surface held by a RegionMapping.
- property vertices¶
Define shortcut for retrieving the vertices of the surface held by a RegionMapping.
equations
¶
The Equation datatypes.
- class tvb.datatypes.equations.Absolute(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.Absolute]¶
Absolute value
Attributes declared¶
- equationtvb.datatypes.equations.Absolute.equation = Final(field_type=<class ‘str’>, default=’abs(var)’, required=True)
\(result = abs(x)\)
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.equations.Alpha(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.Alpha]¶
An Alpha function belonging to the Exponential function family.
Attributes declared¶
- equationtvb.datatypes.equations.Alpha.equation = Final(field_type=<class ‘str’>, default=’where((var-onset) > 0, (alpha * beta) / (beta - alpha) * (exp(-alpha * (var-onset)) - exp(-beta * (var-onset))), 0.0 * var)’, required=True)
\((\alpha * \beta) / (\beta - \alpha) * (\exp(-\alpha * (x-onset)) - \exp(-\beta * (x-onset)))\) for \((x-onset) > 0\)
parameters : tvb.datatypes.equations.Alpha.parameters = Attr(field_type=<class ‘dict’>, default=<function Alpha.<lambda> at 0x7f78d343d990>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Cosine(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.Cosine]¶
A Cosine equation.
Attributes declared¶
- equationtvb.datatypes.equations.Cosine.equation = Final(field_type=<class ‘str’>, default=’amp * cos(6.283185307179586 * frequency * var)’, required=True)
\(amp \cos(2.0 \pi frequency x)\)
parameters : tvb.datatypes.equations.Cosine.parameters = Attr(field_type=<class ‘dict’>, default=<function Cosine.<lambda> at 0x7f78d343d900>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.DiscreteEquation(**kwargs)[source]¶
Bases:
FiniteSupportEquation
Traited class [tvb.datatypes.equations.DiscreteEquation]¶
A special case for ‘discrete’ spaces, such as the regions, where each point in the space is effectively just assigned a value.
Attributes declared¶
- equationtvb.datatypes.equations.DiscreteEquation.equation = Attr(field_type=<class ‘str’>, default=’var’, required=True)
The equation defines a function of \(x\)
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.DoubleExponential(**kwargs)[source]¶
Bases:
HRFKernelEquation
Traited class [tvb.datatypes.equations.DoubleExponential]¶
A difference of two exponential functions to define a kernel for the bold monitor.
Parameters :
\(\tau_1\): Time constant of the second exponential function [s]
\(\tau_2\): Time constant of the first exponential function [s].
\(f_1\) : Frequency of the first sine function [Hz].
\(f_2\) : Frequency of the second sine function [Hz].
\(amp_1\): Amplitude of the first exponential function.
\(amp_2\): Amplitude of the second exponential function.
\(a\) : Amplitude factor after normalization.
Reference:
[P_2000]Alex Polonsky, Randolph Blake, Jochen Braun and David J. Heeger (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience 3: 1153-1159
Attributes declared¶
- equationtvb.datatypes.equations.DoubleExponential.equation = Final(field_type=<class ‘str’>, default=’((amp_1 * exp(-var/tau_1) * sin(2.*pi*f_1*var)) - (amp_2 * exp(-var/ tau_2) * sin(2.*pi*f_2*var)))’, required=True)
\(h(var) = amp_1\exp(\frac{-var}{ au_1}) \sin(2\cdot\pi f_1 \cdot var) - amp_2\cdot \exp(-\frac{var} {\tau_2})*\sin(2\pi f_2 var)\).
parameters : tvb.datatypes.equations.DoubleExponential.parameters = Attr(field_type=<class ‘dict’>, default=<function DoubleExponential.<lambda> at 0x7f78d343dbd0>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- evaluate(var)[source]¶
Generate a discrete representation of the equation for the space represented by
var
.
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.DoubleGaussian(**kwargs)[source]¶
Bases:
FiniteSupportEquation
Traited class [tvb.datatypes.equations.DoubleGaussian]¶
A Mexican-hat function approximated by the difference of Gaussians functions.
Attributes declared¶
- equationtvb.datatypes.equations.DoubleGaussian.equation = Final(field_type=<class ‘str’>, default=’(amp_1 * exp(-((var-midpoint_1)**2 / (2.0 * sigma_1**2)))) - (amp_2 * exp(-((var-midpoint_2)**2 / (2.0 * sigma_2**2))))’, required=True)
\(amp_1 \exp\left(-\left((x-midpoint_1)^2 / \left(2.0 \sigma_1^2\right)\right)\right) - amp_2 \exp\left(-\left((x-midpoint_2)^2 / \left(2.0 \sigma_2^2\right)\right)\right)\)
parameters : tvb.datatypes.equations.DoubleGaussian.parameters = Attr(field_type=<class ‘dict’>, default=<function DoubleGaussian.<lambda> at 0x7f78d343d630>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Equation(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.equations.Equation]¶
Base class for Equation data types.
Attributes declared¶
- equationtvb.datatypes.equations.Equation.equation = Attr(field_type=<class ‘str’>, default=None, required=True)
the equation as it should be interpreted by numexpr
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- evaluate(var)[source]¶
Generate a discrete representation of the equation for the space represented by
var
.The argument
var
can represent a distance, or effective distance, for each node in a simulation. Or a time, or in principle any arbitrary `` space. ``var
can be a single number, a numpy.ndarray or a ?scipy.sparse_matrix? TODO: think this last one is true, need to check as we need it for LocalConnectivity…
- get_series_data(min_range=0, max_range=100, step=None)[source]¶
NOTE: The symbol from the equation which varies should be named: var Returns the series data needed for plotting this equation.
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.EquationsEnum(value)[source]¶
Bases:
SubformEnum
Superclass of all enums that have equations as values
- class tvb.datatypes.equations.FiniteSupportEquation(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.FiniteSupportEquation]¶
Equations that decay to zero as the variable moves away from zero. It is necessary to restrict spatial equation evaluated on a surface to this class, are . The main purpose of this class is to facilitate filtering in the UI, for patters on surface (stimuli surface and localConnectivity).
Attributes declared¶
- equationtvb.datatypes.equations.Equation.equation = Attr(field_type=<class ‘str’>, default=None, required=True)
the equation as it should be interpreted by numexpr
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- class tvb.datatypes.equations.FirstOrderVolterra(**kwargs)[source]¶
Bases:
HRFKernelEquation
Traited class [tvb.datatypes.equations.FirstOrderVolterra]¶
Integral form of the first Volterra kernel of the three used in the Ballon Windekessel model for computing the Bold signal. This function describes a damped Oscillator.
Parameters :
\(\tau_s\): Dimensionless? exponential decay parameter.
\(\tau_f\): Dimensionless? oscillatory parameter.
\(k_1\) : First Volterra kernel coefficient.
\(V_0\) : Resting blood volume fraction.
References :
[F_2000]Friston, K., Mechelli, A., Turner, R., and Price, C., Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage, 12, 466 - 477, 2000.
Attributes declared¶
- equationtvb.datatypes.equations.FirstOrderVolterra.equation = Final(field_type=<class ‘str’>, default=’1/3. * exp(-0.5*(var / tau_s)) * (sin(sqrt(1./tau_f - 1./(4.*tau_s**2)) * var)) / (sqrt(1./tau_f - 1./(4.*tau_s**2)))’, required=True)
\(G(t - t^{\prime}) = e^{\frac{1}{2} \left(\frac{t - t^{\prime}}{\tau_s} \right)} \frac{\sin\left((t - t^{\prime}) \sqrt{\frac{1}{\tau_f} - \frac{1}{4 \tau_s^2}}\right)} {\sqrt{\frac{1}{\tau_f} - \frac{1}{4 \tau_s^2}}} \; \; \; \; \; \; for \; \; \; t \geq t^{\prime} = 0 \; \; \; \; \; \; for \; \; \; t < t^{\prime}\).
parameters : tvb.datatypes.equations.FirstOrderVolterra.parameters = Attr(field_type=<class ‘dict’>, default=<function FirstOrderVolterra.<lambda> at 0x7f78d343dcf0>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Gamma(**kwargs)[source]¶
Bases:
HRFKernelEquation
Traited class [tvb.datatypes.equations.Gamma]¶
A Gamma function for the bold monitor. It belongs to the family of Exponential functions.
Parameters:
\(\tau\) : Exponential time constant of the gamma function [seconds].
\(n\) : The phase delay of the gamma function.
- math:
factorial : (n-1)!. numexpr does not support factorial yet.
- math:
a : Amplitude factor after normalization.
Reference:
[B_1996]Geoffrey M. Boynton, Stephen A. Engel, Gary H. Glover and David J. Heeger (1996). Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1. J Neurosci 16: 4207-4221
Note
might be filtered from the equations used in Stimulus and Local Connectivity.
Attributes declared¶
- equationtvb.datatypes.equations.Gamma.equation = Final(field_type=<class ‘str’>, default=’((var / tau) ** (n - 1) * exp(-(var / tau)) )/ (tau * factorial)’, required=True)
\(h(var) = \frac{(\frac{var}{\tau})^{(n-1)}\exp{-(\frac{var}{\tau})}}{\tau(n-1)!}\).
parameters : tvb.datatypes.equations.Gamma.parameters = Attr(field_type=<class ‘dict’>, default=<function Gamma.<lambda> at 0x7f78d343db40>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- evaluate(var)[source]¶
Generate a discrete representation of the equation for the space represented by
var
.
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Gaussian(**kwargs)[source]¶
Bases:
SpatialApplicableEquation
,FiniteSupportEquation
Traited class [tvb.datatypes.equations.Gaussian]¶
A Gaussian equation. offset: parameter to extend the behaviour of this function when spatializing model parameters.
Attributes declared¶
- equationtvb.datatypes.equations.Gaussian.equation = Final(field_type=<class ‘str’>, default=’(amp * exp(-((var-midpoint)**2 / (2.0 * sigma**2))))+offset’, required=True)
\((amp \exp\left(-\left(\left(x-midpoint\right)^2 / \left(2.0 \sigma^2\right)\right)\right)) + offset\)
parameters : tvb.datatypes.equations.Gaussian.parameters = Attr(field_type=<class ‘dict’>, default=<function Gaussian.<lambda> at 0x7f78d343d510>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.GeneralizedSigmoid(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.GeneralizedSigmoid]¶
A General Sigmoid equation.
Attributes declared¶
- equationtvb.datatypes.equations.GeneralizedSigmoid.equation = Final(field_type=<class ‘str’>, default=’low + (high - low) / (1.0 + exp(-1.8137993642342178 * (var-midpoint)/sigma))’, required=True)
\(low + (high - low) / (1.0 + \exp(-\pi/\sqrt(3.0) (x-midpoint)/\sigma))\)
parameters : tvb.datatypes.equations.GeneralizedSigmoid.parameters = Attr(field_type=<class ‘dict’>, default=<function GeneralizedSigmoid.<lambda> at 0x7f78d343d7e0>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.HRFKernelEquation(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.HRFKernelEquation]¶
Base class for hemodynamic response functions.
Attributes declared¶
- equationtvb.datatypes.equations.Equation.equation = Attr(field_type=<class ‘str’>, default=None, required=True)
the equation as it should be interpreted by numexpr
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- class tvb.datatypes.equations.Identity(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.Identity]¶
Identity value
Attributes declared¶
- equationtvb.datatypes.equations.Identity.equation = Final(field_type=<class ‘str’>, default=’var’, required=True)
\(result = x\)
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.equations.Linear(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.Linear]¶
A linear equation.
Attributes declared¶
- equationtvb.datatypes.equations.Linear.equation = Final(field_type=<class ‘str’>, default=’a * var + b’, required=True)
\(result = a * x + b\)
parameters : tvb.datatypes.equations.Linear.parameters = Attr(field_type=<class ‘dict’>, default=<function Linear.<lambda> at 0x7f78d343d3f0>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Logarithm(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.Logarithm]¶
Logarithm Equation
Attributes declared¶
- equationtvb.datatypes.equations.Logarithm.equation = Final(field_type=<class ‘str’>, default=’log(var)’, required=True)
\(result = log(x)\)
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.equations.MixtureOfGammas(**kwargs)[source]¶
Bases:
HRFKernelEquation
Traited class [tvb.datatypes.equations.MixtureOfGammas]¶
A mixture of two gamma distributions to create a kernel similar to the one used in SPM.
>> import scipy.stats as sp_stats >> import numpy >> t = numpy.linspace(1,20,100) >> a1, a2 = 6., 10. >> lambda = 1. >> c = 0.5 >> hrf = sp_stats.gamma.pdf(t, a1, lambda) - c * sp_stats.gamma.pdf(t, a2, lambda)
gamma.pdf(x, a, theta) = (lambda*x)**(a-1) * exp(-lambda*x) / gamma(a) a : shape parameter theta: 1 / lambda : scale parameter
References:
Parameters:
\(a_{1}\) : shape parameter first gamma pdf.
\(a_{2}\) : shape parameter second gamma pdf.
\(\lambda\) : scale parameter first gamma pdf.
Default values are based on [G_1999]: * \(a_{1} - 1 = n_{1} = 5.0\) * \(a_{2} - 1 = n_{2} = 12.0\) * \(c \equiv a_{2} = 0.4\)
Alternative values \(a_{2}=10\) and \(c=0.5\)
NOTE: gamma_a_1 and gamma_a_2 are placeholders, the true values are computed before evaluating the expression, because numexpr does not support certain functions.
NOTE: [G_1999] used a different analytical function that can be approximated by this difference of gamma pdfs
Attributes declared¶
- equationtvb.datatypes.equations.MixtureOfGammas.equation = Final(field_type=<class ‘str’>, default=’(l * var)**(a_1-1) * exp(-l*var) / gamma_a_1 - c * (l*var)**(a_2-1) * exp(-l*var) / gamma_a_2’, required=True)
\(\frac{\lambda \,t^{a_{1} - 1} \,\, \exp^{-\lambda \,t}}{\Gamma(a_{1})} - 0.5 \frac{\lambda \,t^{a_{2} - 1} \,\, \exp^{-\lambda \,t}}{\Gamma(a_{2})}\).
parameters : tvb.datatypes.equations.MixtureOfGammas.parameters = Attr(field_type=<class ‘dict’>, default=<function MixtureOfGammas.<lambda> at 0x7f78d343dd80>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- evaluate(var)[source]¶
Generate a discrete representation of the equation for the space represented by
var
.
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.PulseTrain(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.PulseTrain]¶
A pulse train , offset with respect to the time axis.
Parameters:
\(\tau\) : pulse width or pulse duration
\(T\) : pulse repetition period
onset : time of the first pulse
amp : amplitude of the pulse
Attributes declared¶
- equationtvb.datatypes.equations.PulseTrain.equation = Final(field_type=<class ‘str’>, default=’where((var>onset)&(((var-onset) % T) < tau), amp, 0)’, required=True)
\(\left\{{\begin{array}{rl}amp,&{\text{if }} ((var-onset) \mod T) < \tau \space and \space var > onset\\0, &{\text{otherwise }}\end{array}}\right.\)
parameters : tvb.datatypes.equations.PulseTrain.parameters = Attr(field_type=<class ‘dict’>, default=<function PulseTrain.<lambda> at 0x7f78d343da20>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.RescaleInterval(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.RescaleInterval]¶
Direct rescaling of an interval from [oldMin..oldMax] into [newMin..newMax]
Attributes declared¶
- equationtvb.datatypes.equations.RescaleInterval.equation = Final(field_type=<class ‘str’>, default=’(var - oldMin) * (newMax - newMin) / (oldMax - oldMin) + newMin’, required=True)
\(result = (x - oldMin) * (newMax - newMin) / (oldMax - oldMin) + newMin\)
parameters : tvb.datatypes.equations.RescaleInterval.parameters = Attr(field_type=<class ‘dict’>, default=<function RescaleInterval.<lambda> at 0x7f78d343d480>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Sigmoid(**kwargs)[source]¶
Bases:
SpatialApplicableEquation
,FiniteSupportEquation
Traited class [tvb.datatypes.equations.Sigmoid]¶
A Sigmoid equation. offset: parameter to extend the behaviour of this function when spatializing model parameters.
Attributes declared¶
- equationtvb.datatypes.equations.Sigmoid.equation = Final(field_type=<class ‘str’>, default=’(amp / (1.0 + exp(-1.8137993642342178 * (radius-var)/sigma))) + offset’, required=True)
\((amp / (1.0 + \exp(-\pi/\sqrt(3.0) (radius-x)/\sigma))) + offset\)
parameters : tvb.datatypes.equations.Sigmoid.parameters = Attr(field_type=<class ‘dict’>, default=<function Sigmoid.<lambda> at 0x7f78d343d6c0>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.Sinusoid(**kwargs)[source]¶
Bases:
TemporalApplicableEquation
Traited class [tvb.datatypes.equations.Sinusoid]¶
A Sinusoid equation.
Attributes declared¶
- equationtvb.datatypes.equations.Sinusoid.equation = Final(field_type=<class ‘str’>, default=’amp * sin(6.283185307179586 * frequency * var)’, required=True)
\(amp \sin(2.0 \pi frequency x)\)
parameters : tvb.datatypes.equations.Sinusoid.parameters = Attr(field_type=<class ‘dict’>, default=<function Sinusoid.<lambda> at 0x7f78d343d870>, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- equation¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- parameters¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.equations.SpatialApplicableEquation(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.SpatialApplicableEquation]¶
Abstract class introduced just for filtering what equations to be displayed in UI, for setting model parameters on the Surface level.
Attributes declared¶
- equationtvb.datatypes.equations.Equation.equation = Attr(field_type=<class ‘str’>, default=None, required=True)
the equation as it should be interpreted by numexpr
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- class tvb.datatypes.equations.TemporalApplicableEquation(**kwargs)[source]¶
Bases:
Equation
Traited class [tvb.datatypes.equations.TemporalApplicableEquation]¶
Abstract class introduced just for filtering what equations to be displayed in UI, for setting the temporal component in Stimulus on region and surface.
Attributes declared¶
- equationtvb.datatypes.equations.Equation.equation = Attr(field_type=<class ‘str’>, default=None, required=True)
the equation as it should be interpreted by numexpr
- parameterstvb.datatypes.equations.Equation.parameters = Attr(field_type=<class ‘dict’>, default=<function Equation.<lambda> at 0x7f78d3957760>, required=True)
Should be a list of the parameters and their meaning, Traits should be able to take defaults and sensible ranges from any traited information that was provided.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
fcd
¶
Adapter that uses the traits module to generate interfaces for … Analyzer.
- class tvb.datatypes.fcd.Fcd(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.fcd.Fcd]¶
Attributes declared¶
array_data : tvb.datatypes.fcd.Fcd.array_data = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.fcd.Fcd.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which FCD is calculated.
- swtvb.datatypes.fcd.Fcd.sw = Float(field_type=<class ‘float’>, default=120000, required=True)
Length of the time window used to divided the time series. FCD matrix is calculated in the following way: the time series is divided in time window of fixed length and with an overlapping of fixed length. The datapoints within each window, centered at time ti, are used to calculate FC(ti) as Pearson correlation. The ij element of the FCD matrix is calculated as the Pearson correlation between FC(ti) and FC(tj) arranged in a vector.
- sptvb.datatypes.fcd.Fcd.sp = Float(field_type=<class ‘float’>, default=2000, required=True)
Spanning= (time windows length)-(overlapping between two consecutive time window). FCD matrix is calculated in the following way: the time series is divided in time window of fixed length and with an overlapping of fixed length. The datapoints within each window, centered at time ti, are used to calculate FC(ti) as Pearson correlation. The ij element of the FCD matrix is calculated as the Pearson correlation between FC(ti) and FC(tj) arranged in a vector
- labels_orderingtvb.datatypes.fcd.Fcd.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘Time’, ‘State Variable’, ‘Mode’), required=True)
List of strings representing names of each data dimension
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- sp¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- sw¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
graph
¶
The Graph datatypes.
- class tvb.datatypes.graph.ConnectivityMeasure(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.graph.ConnectivityMeasure]¶
Measurement of based on a connectivity.
Attributes declared¶
array_data : tvb.datatypes.graph.ConnectivityMeasure.array_data = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
connectivity : tvb.datatypes.graph.ConnectivityMeasure.connectivity = Attr(field_type=<class ‘tvb.datatypes.connectivity.Connectivity’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
A more structured __str__ A 2 column table represented as a dict of str->str The default __str__ and html representations of this object are derived from this table. Override this method and return such a table filled with instance information that informs the user about your instance
- class tvb.datatypes.graph.CorrelationCoefficients(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.graph.CorrelationCoefficients]¶
Correlation coefficients datatype.
Attributes declared¶
array_data : tvb.datatypes.graph.CorrelationCoefficients.array_data = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.graph.CorrelationCoefficients.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which Correlation (coefficients) is applied.
- labels_orderingtvb.datatypes.graph.CorrelationCoefficients.labels_ordering = List(of=<class ‘str’>, default=(‘Node’, ‘Node’, ‘State Variable’, ‘Mode’), required=True)
List of strings representing names of each data dimension
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- PEARSON_MAX = 1¶
- PEARSON_MIN = -1¶
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
A more structured __str__ A 2 column table represented as a dict of str->str The default __str__ and html representations of this object are derived from this table. Override this method and return such a table filled with instance information that informs the user about your instance
- class tvb.datatypes.graph.Covariance(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.graph.Covariance]¶
Covariance datatype.
Attributes declared¶
array_data : tvb.datatypes.graph.Covariance.array_data = NArray(label=’’, dtype=complex128, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.graph.Covariance.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which NodeCovariance is applied.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
A more structured __str__ A 2 column table represented as a dict of str->str The default __str__ and html representations of this object are derived from this table. Override this method and return such a table filled with instance information that informs the user about your instance
local_connectivity
¶
- class tvb.datatypes.local_connectivity.LocalConnectivity(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.local_connectivity.LocalConnectivity]¶
A sparse matrix for representing the local connectivity within the Cortex.
Attributes declared¶
surface : tvb.datatypes.local_connectivity.LocalConnectivity.surface = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
matrix : tvb.datatypes.local_connectivity.LocalConnectivity.matrix = Attr(field_type=<class ‘scipy.sparse._base.spmatrix’>, default=None, required=False)
equation : tvb.datatypes.local_connectivity.LocalConnectivity.equation = Attr(field_type=<class ‘tvb.datatypes.equations.FiniteSupportEquation’>, default=<tvb.datatypes.equations.Gaussian object at 0x7f78cbddda20>, required=False)
- cutofftvb.datatypes.local_connectivity.LocalConnectivity.cutoff = Float(field_type=<class ‘float’>, default=40.0, required=True)
Distance at which to truncate the evaluation in mm.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- compute_sparse_matrix()[source]¶
NOTE: Before calling this method, the surface field should already be set on the local connectivity.
Computes the sparse matrix for this local connectivity.
- cutoff¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- equation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- matrix¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- matrix_gdist = None¶
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- surface¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
mode_decompositions
¶
The Mode Decomposition datatypes.
- class tvb.datatypes.mode_decompositions.IndependentComponents(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.mode_decompositions.IndependentComponents]¶
Result of an Independent Component Analysis.
Attributes declared¶
- sourcetvb.datatypes.mode_decompositions.IndependentComponents.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the ICA is applied.
- mixing_matrixtvb.datatypes.mode_decompositions.IndependentComponents.mixing_matrix = NArray(label=’Mixing matrix - Spatial Maps’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
The linear mixing matrix (Mixing matrix)
- unmixing_matrixtvb.datatypes.mode_decompositions.IndependentComponents.unmixing_matrix = NArray(label=’Unmixing matrix - Spatial maps’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
The estimated unmixing matrix used to obtain the unmixed sources from the data
prewhitening_matrix : tvb.datatypes.mode_decompositions.IndependentComponents.prewhitening_matrix = NArray(label=’Pre-whitening matrix’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- n_componentstvb.datatypes.mode_decompositions.IndependentComponents.n_components = Int(field_type=<class ‘int’>, default=0, required=True)
Observed data matrix is considered to be a linear combination of \(n\) non-Gaussian independent components
norm_source : tvb.datatypes.mode_decompositions.IndependentComponents.norm_source = NArray(label=’Normalised source time series. Zero centered and whitened.’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
component_time_series : tvb.datatypes.mode_decompositions.IndependentComponents.component_time_series = NArray(label=’Component time series. Unmixed sources.’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
normalised_component_time_series : tvb.datatypes.mode_decompositions.IndependentComponents.normalised_component_time_series = NArray(label=’Normalised component time series’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- component_time_series¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- compute_mixing_matrix()[source]¶
Compute the linear mixing matrix A, so X = A * S , where X is the observed data and S contain the independent components
- mixing_matrix¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- n_components¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- norm_source¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- normalised_component_time_series¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- prewhitening_matrix¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- unmixing_matrix¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- class tvb.datatypes.mode_decompositions.PrincipalComponents(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.mode_decompositions.PrincipalComponents]¶
Result of a Principal Component Analysis (PCA).
Attributes declared¶
- sourcetvb.datatypes.mode_decompositions.PrincipalComponents.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the PCA is applied.
- weightstvb.datatypes.mode_decompositions.PrincipalComponents.weights = NArray(label=’Principal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
The vectors of the ‘weights’ with which each time-series is represented in each component.
- fractionstvb.datatypes.mode_decompositions.PrincipalComponents.fractions = NArray(label=’Fraction explained’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
A vector or collection of vectors representing the fraction of the variance explained by each principal component.
norm_source : tvb.datatypes.mode_decompositions.PrincipalComponents.norm_source = NArray(label=’Normalised source time series’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
component_time_series : tvb.datatypes.mode_decompositions.PrincipalComponents.component_time_series = NArray(label=’Component time series’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
normalised_component_time_series : tvb.datatypes.mode_decompositions.PrincipalComponents.normalised_component_time_series = NArray(label=’Normalised component time series’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- component_time_series¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- fractions¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- norm_source¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- normalised_component_time_series¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- weights¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
patterns
¶
The Pattern datatypes.
- class tvb.datatypes.patterns.SpatialPattern(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.patterns.SpatialPattern]¶
Equation for space variation.
Attributes declared¶
spatial : tvb.datatypes.patterns.SpatialPattern.spatial = Attr(field_type=<class ‘tvb.datatypes.equations.FiniteSupportEquation’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure_space(distance)[source]¶
Stores the distance vector as an attribute of the spatiotemporal pattern and uses it to generate the spatial pattern vector.
Depending on equations used and interpretation distance can be an actual physical distance, on a surface, geodesic distance (along the surface) away for some focal point, or a per node weighting…
- space = None¶
- spatial¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property spatial_pattern¶
Return a discrete representation of the spatial pattern.
- class tvb.datatypes.patterns.SpatialPatternVolume(**kwargs)[source]¶
Bases:
SpatialPattern
Traited class [tvb.datatypes.patterns.SpatialPatternVolume]¶
A spatio-temporal pattern defined in a volume.
Attributes declared¶
volume : tvb.datatypes.patterns.SpatialPatternVolume.volume = Attr(field_type=<class ‘tvb.datatypes.volumes.Volume’>, default=None, required=True)
focal_points_volume : tvb.datatypes.patterns.SpatialPatternVolume.focal_points_volume = NArray(label=’Focal points’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
spatial : tvb.datatypes.patterns.SpatialPattern.spatial = Attr(field_type=<class ‘tvb.datatypes.equations.FiniteSupportEquation’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- focal_points_volume¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- volume¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.patterns.SpatioTemporalPattern(**kwargs)[source]¶
Bases:
SpatialPattern
Traited class [tvb.datatypes.patterns.SpatioTemporalPattern]¶
Combine space and time equations.
Attributes declared¶
temporal : tvb.datatypes.patterns.SpatioTemporalPattern.temporal = Attr(field_type=<class ‘tvb.datatypes.equations.TemporalApplicableEquation’>, default=None, required=True)
spatial : tvb.datatypes.patterns.SpatialPattern.spatial = Attr(field_type=<class ‘tvb.datatypes.equations.FiniteSupportEquation’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure_time(time)[source]¶
Stores the time vector, physical units (ms), as an attribute of the spatio-temporal pattern and uses it to generate the temporal pattern vector.
- temporal¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property temporal_pattern¶
Return a discrete representation of the temporal pattern.
- time = None¶
- class tvb.datatypes.patterns.StimuliRegion(**kwargs)[source]¶
Bases:
SpatioTemporalPattern
Traited class [tvb.datatypes.patterns.StimuliRegion]¶
A class that bundles the temporal profile of the stimulus, together with the list of scaling weights of the regions where it will applied.
Attributes declared¶
connectivity : tvb.datatypes.patterns.StimuliRegion.connectivity = Attr(field_type=<class ‘tvb.datatypes.connectivity.Connectivity’>, default=None, required=True)
spatial : tvb.datatypes.patterns.StimuliRegion.spatial = Attr(field_type=<class ‘tvb.datatypes.equations.DiscreteEquation’>, default=<tvb.datatypes.equations.DiscreteEquation object at 0x7f78cc6dfc10>, required=True)
weight : tvb.datatypes.patterns.StimuliRegion.weight = NArray(label=’scaling’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
temporal : tvb.datatypes.patterns.SpatioTemporalPattern.temporal = Attr(field_type=<class ‘tvb.datatypes.equations.TemporalApplicableEquation’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure_space(region_mapping=None)[source]¶
Do necessary preparations in order to use this stimulus. NOTE: this was previously done in simulator configure_stimuli() method. It no needs to be used in stimulus viewer also.
- connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- static get_default_weights(number_of_regions)[source]¶
Returns a list with a number of elements equal to the given number of regions.
- spatial¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- weight¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property weight_array¶
Wrap weight List into a Numpy array, as it is requested by the simulator.
- class tvb.datatypes.patterns.StimuliSurface(**kwargs)[source]¶
Bases:
SpatioTemporalPattern
Traited class [tvb.datatypes.patterns.StimuliSurface]¶
A spatio-temporal pattern defined in a Surface DataType. It includes the list of focal points.
Attributes declared¶
surface : tvb.datatypes.patterns.StimuliSurface.surface = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
focal_points_triangles : tvb.datatypes.patterns.StimuliSurface.focal_points_triangles = NArray(label=’Focal points triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
temporal : tvb.datatypes.patterns.SpatioTemporalPattern.temporal = Attr(field_type=<class ‘tvb.datatypes.equations.TemporalApplicableEquation’>, default=None, required=True)
spatial : tvb.datatypes.patterns.SpatialPattern.spatial = Attr(field_type=<class ‘tvb.datatypes.equations.FiniteSupportEquation’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure_space(region_mapping=None)[source]¶
Do necessary preparations in order to use this stimulus. NOTE: this was previously done in simulator configure_stimuli() method. It no needs to be used in stimulus viewer also.
- property focal_points_surface¶
- focal_points_triangles¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- surface¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
projections
¶
The ProjectionMatrices DataTypes.
- class tvb.datatypes.projections.ProjectionMatrix(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.projections.ProjectionMatrix]¶
Base DataType for representing a ProjectionMatrix. The projection is between a source of type CorticalSurface and a set of Sensors.
Attributes declared¶
projection_type : tvb.datatypes.projections.ProjectionMatrix.projection_type = Final(field_type=<class ‘str’>, default=None, required=True)
- brain_skulltvb.datatypes.projections.ProjectionMatrix.brain_skull = Attr(field_type=<class ‘tvb.datatypes.surfaces.BrainSkull’>, default=None, required=False)
Boundary between skull and cortex domains.
- skull_skintvb.datatypes.projections.ProjectionMatrix.skull_skin = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkullSkin’>, default=None, required=False)
Boundary between skull and skin domains.
- skin_airtvb.datatypes.projections.ProjectionMatrix.skin_air = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkinAir’>, default=None, required=False)
Boundary between skin and air domains.
- conductancestvb.datatypes.projections.ProjectionMatrix.conductances = Attr(field_type=<class ‘dict’>, default={‘air’: 0.0, ‘skin’: 1.0, ‘skull’: 0.01, ‘brain’: 1.0}, required=False)
A dictionary representing the conductances of …
sources : tvb.datatypes.projections.ProjectionMatrix.sources = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
- sensorstvb.datatypes.projections.ProjectionMatrix.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.Sensors’>, default=None, required=False)
A set of sensors to compute projection matrix for them.
projection_data : tvb.datatypes.projections.ProjectionMatrix.projection_data = NArray(label=’Projection Matrix Data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- brain_skull¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- conductances¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- projection_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- projection_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property shape¶
- skin_air¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- skull_skin¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- sources¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.projections.ProjectionSurfaceEEG(**kwargs)[source]¶
Bases:
ProjectionMatrix
Traited class [tvb.datatypes.projections.ProjectionSurfaceEEG]¶
Specific projection, from a CorticalSurface to EEG sensors.
Attributes declared¶
projection_type : tvb.datatypes.projections.ProjectionSurfaceEEG.projection_type = Final(field_type=<class ‘str’>, default=’projEEG’, required=True)
sensors : tvb.datatypes.projections.ProjectionSurfaceEEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsEEG’>, default=None, required=True)
- brain_skulltvb.datatypes.projections.ProjectionMatrix.brain_skull = Attr(field_type=<class ‘tvb.datatypes.surfaces.BrainSkull’>, default=None, required=False)
Boundary between skull and cortex domains.
- skull_skintvb.datatypes.projections.ProjectionMatrix.skull_skin = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkullSkin’>, default=None, required=False)
Boundary between skull and skin domains.
- skin_airtvb.datatypes.projections.ProjectionMatrix.skin_air = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkinAir’>, default=None, required=False)
Boundary between skin and air domains.
- conductancestvb.datatypes.projections.ProjectionMatrix.conductances = Attr(field_type=<class ‘dict’>, default={‘air’: 0.0, ‘skin’: 1.0, ‘skull’: 0.01, ‘brain’: 1.0}, required=False)
A dictionary representing the conductances of …
sources : tvb.datatypes.projections.ProjectionMatrix.sources = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
projection_data : tvb.datatypes.projections.ProjectionMatrix.projection_data = NArray(label=’Projection Matrix Data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='projection_eeg_65_surface_16k.npy', matlab_data_name='ProjectionMatrix', is_brainstorm=False)[source]¶
- projection_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.projections.ProjectionSurfaceMEG(**kwargs)[source]¶
Bases:
ProjectionMatrix
Traited class [tvb.datatypes.projections.ProjectionSurfaceMEG]¶
Specific projection, from a CorticalSurface to MEG sensors.
Attributes declared¶
projection_type : tvb.datatypes.projections.ProjectionSurfaceMEG.projection_type = Final(field_type=<class ‘str’>, default=’projMEG’, required=True)
sensors : tvb.datatypes.projections.ProjectionSurfaceMEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsMEG’>, default=None, required=True)
- brain_skulltvb.datatypes.projections.ProjectionMatrix.brain_skull = Attr(field_type=<class ‘tvb.datatypes.surfaces.BrainSkull’>, default=None, required=False)
Boundary between skull and cortex domains.
- skull_skintvb.datatypes.projections.ProjectionMatrix.skull_skin = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkullSkin’>, default=None, required=False)
Boundary between skull and skin domains.
- skin_airtvb.datatypes.projections.ProjectionMatrix.skin_air = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkinAir’>, default=None, required=False)
Boundary between skin and air domains.
- conductancestvb.datatypes.projections.ProjectionMatrix.conductances = Attr(field_type=<class ‘dict’>, default={‘air’: 0.0, ‘skin’: 1.0, ‘skull’: 0.01, ‘brain’: 1.0}, required=False)
A dictionary representing the conductances of …
sources : tvb.datatypes.projections.ProjectionMatrix.sources = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
projection_data : tvb.datatypes.projections.ProjectionMatrix.projection_data = NArray(label=’Projection Matrix Data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='projection_meg_276_surface_16k.npy', matlab_data_name=None, is_brainstorm=False)[source]¶
- projection_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.projections.ProjectionSurfaceSEEG(**kwargs)[source]¶
Bases:
ProjectionMatrix
Traited class [tvb.datatypes.projections.ProjectionSurfaceSEEG]¶
Specific projection, from a CorticalSurface to SEEG sensors.
Attributes declared¶
projection_type : tvb.datatypes.projections.ProjectionSurfaceSEEG.projection_type = Final(field_type=<class ‘str’>, default=’projSEEG’, required=True)
sensors : tvb.datatypes.projections.ProjectionSurfaceSEEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsInternal’>, default=None, required=True)
- brain_skulltvb.datatypes.projections.ProjectionMatrix.brain_skull = Attr(field_type=<class ‘tvb.datatypes.surfaces.BrainSkull’>, default=None, required=False)
Boundary between skull and cortex domains.
- skull_skintvb.datatypes.projections.ProjectionMatrix.skull_skin = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkullSkin’>, default=None, required=False)
Boundary between skull and skin domains.
- skin_airtvb.datatypes.projections.ProjectionMatrix.skin_air = Attr(field_type=<class ‘tvb.datatypes.surfaces.SkinAir’>, default=None, required=False)
Boundary between skin and air domains.
- conductancestvb.datatypes.projections.ProjectionMatrix.conductances = Attr(field_type=<class ‘dict’>, default={‘air’: 0.0, ‘skin’: 1.0, ‘skull’: 0.01, ‘brain’: 1.0}, required=False)
A dictionary representing the conductances of …
sources : tvb.datatypes.projections.ProjectionMatrix.sources = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
projection_data : tvb.datatypes.projections.ProjectionMatrix.projection_data = NArray(label=’Projection Matrix Data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='projection_seeg_588_surface_16k.npy', matlab_data_name=None, is_brainstorm=False)[source]¶
- projection_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
region_mapping
¶
DataTypes for mapping some TVB DataTypes to a Connectivity (regions).
In FreeSurfer terms, a RegionMapping is a parcellation and a VolumeMapping is a segmentation.
- class tvb.datatypes.region_mapping.RegionMapping(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.region_mapping.RegionMapping]¶
An array (of length Surface.vertices). Each value is representing the index in Connectivity regions to which the current vertex is mapped.
Attributes declared¶
array_data : tvb.datatypes.region_mapping.RegionMapping.array_data = NArray(label=’’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
connectivity : tvb.datatypes.region_mapping.RegionMapping.connectivity = Attr(field_type=<class ‘tvb.datatypes.connectivity.Connectivity’>, default=None, required=True)
surface : tvb.datatypes.region_mapping.RegionMapping.surface = Attr(field_type=<class ‘tvb.datatypes.surfaces.Surface’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- surface¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.region_mapping.RegionVolumeMapping(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.region_mapping.RegionVolumeMapping]¶
Each value is representing the index in Connectivity regions to which the current voxel is mapped.
Attributes declared¶
array_data : tvb.datatypes.region_mapping.RegionVolumeMapping.array_data = NArray(label=’’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
connectivity : tvb.datatypes.region_mapping.RegionVolumeMapping.connectivity = Attr(field_type=<class ‘tvb.datatypes.connectivity.Connectivity’>, default=None, required=True)
volume : tvb.datatypes.region_mapping.RegionVolumeMapping.volume = Attr(field_type=<class ‘tvb.datatypes.volumes.Volume’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- volume¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
sensors
¶
The Sensors dataType.
- class tvb.datatypes.sensors.SensorTypesEnum(value)[source]¶
Bases:
TVBEnum
An enumeration.
- TYPE_EEG = 'EEG'¶
- TYPE_INTERNAL = 'Internal'¶
- TYPE_MEG = 'MEG'¶
- class tvb.datatypes.sensors.Sensors(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.sensors.Sensors]¶
Base Sensors class. All sensors have locations. Some will have orientations, e.g. MEG.
Attributes declared¶
sensors_type : tvb.datatypes.sensors.Sensors.sensors_type = Attr(field_type=<class ‘str’>, default=None, required=False)
labels : tvb.datatypes.sensors.Sensors.labels = NArray(label=’Sensor labels’, dtype=<U128, default=None, dim_names=(), ndim=None, required=True)
locations : tvb.datatypes.sensors.Sensors.locations = NArray(label=’Sensor locations’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
has_orientation : tvb.datatypes.sensors.Sensors.has_orientation = Attr(field_type=<class ‘bool’>, default=False, required=True)
orientations : tvb.datatypes.sensors.Sensors.orientations = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
- number_of_sensorstvb.datatypes.sensors.Sensors.number_of_sensors = Int(field_type=<class ‘int’>, default=0, required=True)
The number of sensors described by these Sensors.
- usabletvb.datatypes.sensors.Sensors.usable = NArray(label=’Usable sensors’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
The sensors in set which are used for signal data.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- configure()[source]¶
Invoke the compute methods for computable attributes that haven’t been set during initialization.
- classmethod from_bytes_stream(bytes_stream, content_type='.txt')[source]¶
Construct Sensors from source_file.
- has_orientation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- labels¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- locations¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- number_of_sensors¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- orientations¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- sensors_to_surface(surface_to_map)[source]¶
Map EEG sensors onto the head surface (skin-air).
EEG sensor locations are typically only given on a unit sphere, that is, they are effectively only identified by their orientation with respect to a coordinate system. This method is used to map these unit vector sensor “locations” to a specific location on the surface of the skin.
Assumes coordinate systems are aligned, i.e. common x,y,z and origin.
- sensors_type¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- usable¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- class tvb.datatypes.sensors.SensorsEEG(**kwargs)[source]¶
Bases:
Sensors
Traited class [tvb.datatypes.sensors.SensorsEEG]¶
EEG sensor locations are represented as unit vectors, these need to be combined with a head(outer-skin) surface to obtain actual sensor locations
position | / \ / \ file columns: labels, x, y, z
Attributes declared¶
sensors_type : tvb.datatypes.sensors.SensorsEEG.sensors_type = Final(field_type=<class ‘str’>, default=’EEG’, required=True)
has_orientation : tvb.datatypes.sensors.SensorsEEG.has_orientation = Attr(field_type=<class ‘bool’>, default=False, required=True)
labels : tvb.datatypes.sensors.Sensors.labels = NArray(label=’Sensor labels’, dtype=<U128, default=None, dim_names=(), ndim=None, required=True)
locations : tvb.datatypes.sensors.Sensors.locations = NArray(label=’Sensor locations’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
orientations : tvb.datatypes.sensors.Sensors.orientations = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
- number_of_sensorstvb.datatypes.sensors.Sensors.number_of_sensors = Int(field_type=<class ‘int’>, default=0, required=True)
The number of sensors described by these Sensors.
- usabletvb.datatypes.sensors.Sensors.usable = NArray(label=’Usable sensors’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
The sensors in set which are used for signal data.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- has_orientation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- sensors_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.sensors.SensorsInternal(**kwargs)[source]¶
Bases:
Sensors
Traited class [tvb.datatypes.sensors.SensorsInternal]¶
Sensors inside the brain…
Attributes declared¶
sensors_type : tvb.datatypes.sensors.SensorsInternal.sensors_type = Final(field_type=<class ‘str’>, default=’Internal’, required=True)
labels : tvb.datatypes.sensors.Sensors.labels = NArray(label=’Sensor labels’, dtype=<U128, default=None, dim_names=(), ndim=None, required=True)
locations : tvb.datatypes.sensors.Sensors.locations = NArray(label=’Sensor locations’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
has_orientation : tvb.datatypes.sensors.Sensors.has_orientation = Attr(field_type=<class ‘bool’>, default=False, required=True)
orientations : tvb.datatypes.sensors.Sensors.orientations = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
- number_of_sensorstvb.datatypes.sensors.Sensors.number_of_sensors = Int(field_type=<class ‘int’>, default=0, required=True)
The number of sensors described by these Sensors.
- usabletvb.datatypes.sensors.Sensors.usable = NArray(label=’Usable sensors’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
The sensors in set which are used for signal data.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- property grouped_electrodes¶
- sensors_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.sensors.SensorsMEG(**kwargs)[source]¶
Bases:
Sensors
Traited class [tvb.datatypes.sensors.SensorsMEG]¶
These are actually just SQUIDS. Axial or planar gradiometers are achieved by calculating lead fields for two sets of sensors and then subtracting…
position orientation | | / \ / \ / \ / \ file columns: labels, x, y, z, dx, dy, dz
Attributes declared¶
sensors_type : tvb.datatypes.sensors.SensorsMEG.sensors_type = Final(field_type=<class ‘str’>, default=’MEG’, required=True)
- orientationstvb.datatypes.sensors.SensorsMEG.orientations = NArray(label=’Sensor orientations’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array representing the orientation of the MEG SQUIDs
has_orientation : tvb.datatypes.sensors.SensorsMEG.has_orientation = Attr(field_type=<class ‘bool’>, default=True, required=True)
labels : tvb.datatypes.sensors.Sensors.labels = NArray(label=’Sensor labels’, dtype=<U128, default=None, dim_names=(), ndim=None, required=True)
locations : tvb.datatypes.sensors.Sensors.locations = NArray(label=’Sensor locations’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- number_of_sensorstvb.datatypes.sensors.Sensors.number_of_sensors = Int(field_type=<class ‘int’>, default=0, required=True)
The number of sensors described by these Sensors.
- usabletvb.datatypes.sensors.Sensors.usable = NArray(label=’Usable sensors’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
The sensors in set which are used for signal data.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- has_orientation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- orientations¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- sensors_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
spectral
¶
The Spectral datatypes.
- class tvb.datatypes.spectral.CoherenceSpectrum(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.spectral.CoherenceSpectrum]¶
Result of a NodeCoherence Analysis.
Attributes declared¶
array_data : tvb.datatypes.spectral.CoherenceSpectrum.array_data = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.spectral.CoherenceSpectrum.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the node_coherence is applied.
- nffttvb.datatypes.spectral.CoherenceSpectrum.nfft = Int(field_type=<class ‘int’>, default=256, required=True)
NOTE: must be a power of 2
frequency : tvb.datatypes.spectral.CoherenceSpectrum.frequency = NArray(label=’Frequency’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- frequency¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- nfft¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.spectral.ComplexCoherenceSpectrum(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.spectral.ComplexCoherenceSpectrum]¶
Result of a NodeComplexCoherence Analysis.
Attributes declared¶
- cross_spectrumtvb.datatypes.spectral.ComplexCoherenceSpectrum.cross_spectrum = NArray(label=’The cross spectrum’, dtype=complex128, default=None, dim_names=(), ndim=None, required=True)
A complex ndarray that contains the nodes x nodes cross spectrum for every frequency frequency and for every segment.
- array_datatvb.datatypes.spectral.ComplexCoherenceSpectrum.array_data = NArray(label=’Complex Coherence’, dtype=complex128, default=None, dim_names=(), ndim=None, required=True)
The complex coherence coefficients calculated from the cross spectrum. The imaginary values of this complex ndarray represent the imaginary coherence.
- sourcetvb.datatypes.spectral.ComplexCoherenceSpectrum.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the node_coherence is applied.
- epoch_lengthtvb.datatypes.spectral.ComplexCoherenceSpectrum.epoch_length = Float(field_type=<class ‘float’>, default=0, required=True)
The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.
- segment_lengthtvb.datatypes.spectral.ComplexCoherenceSpectrum.segment_length = Float(field_type=<class ‘float’>, default=0, required=True)
The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.
- windowing_functiontvb.datatypes.spectral.ComplexCoherenceSpectrum.windowing_function = Attr(field_type=<class ‘str’>, default=None, required=True)
The windowing function applied to each time segment prior to application of the FFT.
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- cross_spectrum¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- epoch_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- property freq_step¶
Frequency step size of the Complex Coherence Spectrum.
- property frequency¶
Frequencies represented in the Complex Coherence Spectrum.
- property max_freq¶
Maximum frequency represented in the Complex Coherence Spectrum.
- segment_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- spectrum_types = ['Imaginary', 'Real', 'Absolute']¶
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- windowing_function¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.spectral.FourierSpectrum(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.spectral.FourierSpectrum]¶
Result of a Fourier Analysis.
Attributes declared¶
array_data : tvb.datatypes.spectral.FourierSpectrum.array_data = NArray(label=’’, dtype=complex128, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.spectral.FourierSpectrum.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the FFT is applied.
- segment_lengthtvb.datatypes.spectral.FourierSpectrum.segment_length = Float(field_type=<class ‘float’>, default=0, required=True)
The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.
- windowing_functiontvb.datatypes.spectral.FourierSpectrum.windowing_function = EnumAttr(field_type=<enum ‘WindowingFunctionsEnum’>, default=<WindowingFunctionsEnum.HAMMING: ‘hamming’>, required=False)
The windowing function applied to each time segment prior to application of the FFT.
amplitude : tvb.datatypes.spectral.FourierSpectrum.amplitude = NArray(label=’Amplitude’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
phase : tvb.datatypes.spectral.FourierSpectrum.phase = NArray(label=’Phase’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
power : tvb.datatypes.spectral.FourierSpectrum.power = NArray(label=’Power’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
average_power : tvb.datatypes.spectral.FourierSpectrum.average_power = NArray(label=’Average Power’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
normalised_average_power : tvb.datatypes.spectral.FourierSpectrum.normalised_average_power = NArray(label=’Normalised Power’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- amplitude¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- average_power¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- compute_normalised_average_power()[source]¶
Normalised-average-power of the complex Fourier spectrum.
- property freq_step¶
Frequency step size of the complex Fourier spectrum.
- property frequency¶
Frequencies represented the complex Fourier spectrum.
- property max_freq¶
Amplitude of the complex Fourier spectrum.
- normalised_average_power¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- phase¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- power¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- segment_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- windowing_function¶
- class tvb.datatypes.spectral.WaveletCoefficients(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.spectral.WaveletCoefficients]¶
This class bundles all the elements of a Wavelet Analysis into a single object, including the input TimeSeries datatype and the output results as arrays (FloatArray)
Attributes declared¶
array_data : tvb.datatypes.spectral.WaveletCoefficients.array_data = NArray(label=’’, dtype=complex128, default=None, dim_names=(), ndim=None, required=True)
source : tvb.datatypes.spectral.WaveletCoefficients.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
- mothertvb.datatypes.spectral.WaveletCoefficients.mother = Attr(field_type=<class ‘str’>, default=’morlet’, required=True)
A string specifying the type of mother wavelet to use, default is ‘morlet’.
sample_period : tvb.datatypes.spectral.WaveletCoefficients.sample_period = Float(field_type=<class ‘float’>, default=0, required=True)
- frequenciestvb.datatypes.spectral.WaveletCoefficients.frequencies = NArray(label=’Frequencies’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
A vector that maps scales to frequencies.
normalisation : tvb.datatypes.spectral.WaveletCoefficients.normalisation = Attr(field_type=<class ‘str’>, default=None, required=True)
q_ratio : tvb.datatypes.spectral.WaveletCoefficients.q_ratio = Float(field_type=<class ‘float’>, default=5.0, required=True)
amplitude : tvb.datatypes.spectral.WaveletCoefficients.amplitude = NArray(label=’Amplitude’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
phase : tvb.datatypes.spectral.WaveletCoefficients.phase = NArray(label=’Phase’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
power : tvb.datatypes.spectral.WaveletCoefficients.power = NArray(label=’Power’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- amplitude¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- frequencies¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property frequency¶
Frequencies represented by the wavelet spectrogram.
- mother¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- normalisation¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- phase¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- power¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- q_ratio¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- sample_period¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
structural
¶
The Volume datatypes.
- class tvb.datatypes.structural.StructuralMRI(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.structural.StructuralMRI]¶
Quantitative volumetric data recorded by means of Magnetic Resonance Imaging.
Attributes declared¶
array_data : tvb.datatypes.structural.StructuralMRI.array_data = NArray(label=’contrast’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
weighting : tvb.datatypes.structural.StructuralMRI.weighting = Attr(field_type=<class ‘str’>, default=None, required=True)
volume : tvb.datatypes.structural.StructuralMRI.volume = Attr(field_type=<class ‘tvb.datatypes.volumes.Volume’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- volume¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- weighting¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
surfaces
¶
Surface relates DataTypes.
- class tvb.datatypes.surfaces.BrainSkull(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.BrainSkull]¶
Brain - inner skull interface surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.BrainSkull.surface_type = Final(field_type=<class ‘str’>, default=’Brain Skull’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='inner_skull_4096.zip')[source]¶
Construct a Surface from source_file.
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.CorticalSurface(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.CorticalSurface]¶
Cortical or pial surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.CorticalSurface.surface_type = Final(field_type=<class ‘str’>, default=’Cortical Surface’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.EEGCap(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.EEGCap]¶
EEG cap surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.EEGCap.surface_type = Final(field_type=<class ‘str’>, default=’EEG Cap’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.FaceSurface(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.FaceSurface]¶
Face surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.FaceSurface.surface_type = Final(field_type=<class ‘str’>, default=’Face’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.SkinAir(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.SkinAir]¶
Skin - air interface surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.SkinAir.surface_type = Final(field_type=<class ‘str’>, default=’Skin Air’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='outer_skin_4096.zip')[source]¶
Construct a Surface from source_file.
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.SkullSkin(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.SkullSkin]¶
Outer-skull - scalp interface surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.SkullSkin.surface_type = Final(field_type=<class ‘str’>, default=’Skull Skin’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- classmethod from_file(source_file='outer_skull_4096.zip')[source]¶
Construct a Surface from source_file.
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- class tvb.datatypes.surfaces.Surface(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.surfaces.Surface]¶
A base class for other surfaces.
Attributes declared¶
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
surface_type : tvb.datatypes.surfaces.Surface.surface_type = Final(field_type=<class ‘str’>, default=None, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- bi_hemispheric¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- compute_equation(focal_points, equation)[source]¶
focal_points - a list of focal points. Used for specifying the vertices from which the distance is calculated. equation - the equation which should be evaluated
- compute_geodesic_distance_matrix(max_dist)[source]¶
Calculate a sparse matrix of the geodesic distance from each vertex to all vertices within max_dist of them on the surface,
max_dist
: find the distance to vertices out as far as max_dist.NOTE: Compute time increases rapidly with max_dist and the memory efficiency of the sparse matrices decreases, so, don’t use too large a value for max_dist…
- compute_topological_constants()[source]¶
- Returns a 4 tuple:
the Euler characteristic number
indices for any isolated vertices
indices of edges where the surface is pinched
indices of edges that border holes in the surface
We call isolated vertices those who do not belong to at least 3 triangles.
- compute_vertex_normals()[source]¶
Estimates vertex normals, based on triangle normals weighted by the angle they subtend at each vertex…
- property edge_lengths¶
The length of the edges defined in the
edges
attribute.Calculate the Euclidean distance between the pair of vertices that define the edges in the
edges
attribute, when missing.
- edge_max_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- edge_mean_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- edge_min_length¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- property edge_triangles¶
List of the pairs of triangles sharing an edge.
- property edges¶
A sorted list of the two element tuples(vertex_0, vertex_1) representing the edges of the mesh.
- classmethod from_bytes_stream(bytes_stream, content_type='.zip')[source]¶
Construct a Surface from a stream of bytes.
- classmethod from_file(source_file='cortex_16384.zip')[source]¶
Construct a Surface from source_file.
- geodesic_distance(sources, max_dist=None, targets=None)[source]¶
Calculate the geodesic distance between vertices of the surface,
sources
: one or more indices into vertices, these are required,they specify the vertices from which the distance is calculated. NOTE: if multiple sources are provided then the distance returned is the shortest from the closest source.
max_dist
: find the distance to vertices out as far as max_dist.targets
: one or more indices into vertices,.- NOTE: Either
targets
ormax_dist
should be specified, but not both, specifying neither is equivalent to max_dist=1e100.
- NOTE: when max_dist is specifed, distances > max_dist are returned as
numpy.inf
If end_vertex is omitted the distance from the starting vertex to all vertices within max_dist will be returned, if max_dist is also omitted the distance to all vertices on the surface will be returned.
- geodesic_distance_matrix¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- hemisphere_mask¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- laplace_beltrami(fv, h=1.0)[source]¶
Evaluates the discrete Laplace-Beltrami operator for a given vertex-wise function and geodesic distance matrix. From Belkin 2008:
Let K be a mesh in R^3, with V its set of vertices. For face t in K, the number of vertices in t is #t, and V(t) is the set of vertices in t. For a function f : V -> R, this produces another function L_K^h f : V -> R, and L_K^h is computed for any w in V,
L_K^h f (w) = 1 / (4 pi h^2) sum_{t in K} area(t) / #t sum_{p in V(t)} exp(-||p - w||^2/(4*h)) (f(p) - f(w))
- Parameters:
fv – a function evaluated on each vertex, shape (n, )
h – default 1.0
- Returns:
matrix of evaluated L-B operator
- nth_ring(vertex, neighbourhood=2, contains=False)[source]¶
Return the vertices of the nth ring around a given vertex, defaults to neighbourhood=2. NOTE: if you want neighbourhood=1 then you should directly access the property vertex_neighbours, ie use surf_obj.vertex_neighbours[vertex] setting contains=True returns all vertices from rings 1 to n inclusive.
- property number_of_edges¶
The number of edges making up the mesh surface.
- number_of_triangles¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- number_of_vertices¶
Declares an integer This is different from Attr(field_type=int). The former enforces int subtypes This allows all integer types, including numpy ones that can be safely cast to the declared type according to numpy rules
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
- property triangle_angles¶
An array containing the inner angles for each triangle, same shape as triangles.
- property triangle_areas¶
An array specifying the area of the triangles making up a surface.
- property triangle_centres¶
An array specifying the location of triangle centres.
- triangle_normals¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- triangles¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- valid_for_simulations¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- validate()[source]¶
Check that the internal invariants of this class are satisfied. Not meant to ensure that that is the case. Use configure for that. The default configure calls this before it returns. It complains about missing required attrs Can be overridden in subclasses
- validate_topology_for_simulations()[source]¶
Validates if this surface can be used in simulations. The surface should be topologically equivalent to one or two closed spheres. It should not contain isolated vertices. It should not be pinched or have holes: all edges must belong to 2 triangles. The allowance for one or two closed surfaces is because the skull/etc should be represented by a single closed surface and we typically represent the cortex as one closed surface per hemisphere.
- Returns:
a ValidationResult
- property vertex_neighbours¶
List of the set of neighbours for each vertex.
- vertex_normals¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property vertex_triangles¶
List of the set of triangles surrounding each vertex.
- vertices¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- zero_based_triangles¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.surfaces.SurfaceTypesEnum(value)[source]¶
Bases:
TVBEnum
An enumeration.
- BRAIN_SKULL_SURFACE = 'Brain Skull'¶
- CORTICAL_SURFACE = 'Cortical Surface'¶
- EEG_CAP_SURFACE = 'EEG Cap'¶
- FACE_SURFACE = 'Face'¶
- KEY_OPTION_READ_METADATA = 'Specified in the file metadata'¶
- SKIN_AIR_SURFACE = 'Skin Air'¶
- SKULL_SKIN_SURFACE = 'Skull Skin'¶
- WHITE_MATTER_SURFACE = 'White Matter'¶
- class tvb.datatypes.surfaces.ValidationResult(logger)[source]¶
Bases:
object
Used by surface validate methods to report non-fatal failed validations
- class tvb.datatypes.surfaces.WhiteMatterSurface(**kwargs)[source]¶
Bases:
Surface
Traited class [tvb.datatypes.surfaces.WhiteMatterSurface]¶
White matter - gray matter interface surface.
Attributes declared¶
surface_type : tvb.datatypes.surfaces.WhiteMatterSurface.surface_type = Final(field_type=<class ‘str’>, default=’White Matter’, required=True)
- verticestvb.datatypes.surfaces.Surface.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the surface vertices.
- trianglestvb.datatypes.surfaces.Surface.triangles = NArray(label=’Triangles’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Array of indices into the vertices, specifying the triangles which define the surface.
- vertex_normalstvb.datatypes.surfaces.Surface.vertex_normals = NArray(label=’Vertex normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces vertices.
- triangle_normalstvb.datatypes.surfaces.Surface.triangle_normals = NArray(label=’Triangle normal vectors’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of unit normal vectors for the surfaces triangles.
- geodesic_distance_matrixtvb.datatypes.surfaces.Surface.geodesic_distance_matrix = Attr(field_type=<class ‘scipy.sparse._csc.csc_matrix’>, default=None, required=False)
A sparse matrix of truncated geodesic distances
- number_of_verticestvb.datatypes.surfaces.Surface.number_of_vertices = Int(field_type=<class ‘int’>, default=0, required=True)
The number of vertices making up this surface.
- number_of_trianglestvb.datatypes.surfaces.Surface.number_of_triangles = Int(field_type=<class ‘int’>, default=0, required=True)
The number of triangles making up this surface.
edge_mean_length : tvb.datatypes.surfaces.Surface.edge_mean_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_min_length : tvb.datatypes.surfaces.Surface.edge_min_length = Float(field_type=<class ‘float’>, default=0, required=True)
edge_max_length : tvb.datatypes.surfaces.Surface.edge_max_length = Float(field_type=<class ‘float’>, default=0, required=True)
hemisphere_mask : tvb.datatypes.surfaces.Surface.hemisphere_mask = NArray(label=’An array specifying if a vertex belongs to the right hemisphere’, dtype=bool, default=None, dim_names=(), ndim=None, required=False)
zero_based_triangles : tvb.datatypes.surfaces.Surface.zero_based_triangles = Attr(field_type=<class ‘bool’>, default=None, required=True)
bi_hemispheric : tvb.datatypes.surfaces.Surface.bi_hemispheric = Attr(field_type=<class ‘bool’>, default=False, required=True)
valid_for_simulations : tvb.datatypes.surfaces.Surface.valid_for_simulations = Attr(field_type=<class ‘bool’>, default=True, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- surface_type¶
An attribute that can only be set once. If a default is provided it counts as a set, so it cannot be written to. Note that if the default is a mutable type, the value is shared with all instances of the owning class. We cannot enforce true constancy in python
temporal_correlations
¶
The Temporal Correlation datatypes.
- class tvb.datatypes.temporal_correlations.CrossCorrelation(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.temporal_correlations.CrossCorrelation]¶
Result of a CrossCorrelation Analysis.
Attributes declared¶
array_data : tvb.datatypes.temporal_correlations.CrossCorrelation.array_data = NArray(label=’’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
- sourcetvb.datatypes.temporal_correlations.CrossCorrelation.source = Attr(field_type=<class ‘tvb.datatypes.time_series.TimeSeries’>, default=None, required=True)
Links to the time-series on which the cross_correlation is applied.
time : tvb.datatypes.temporal_correlations.CrossCorrelation.time = NArray(label=’Temporal Offsets’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
- labels_orderingtvb.datatypes.temporal_correlations.CrossCorrelation.labels_ordering = List(of=<class ‘str’>, default=(‘Offsets’, ‘Node’, ‘Node’, ‘State Variable’, ‘Mode’), required=True)
List of strings representing names of each data dimension
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- array_data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- source¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- time¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
time_series
¶
The TimeSeries datatypes.
- class tvb.datatypes.time_series.SensorsTSBase(**kwargs)[source]¶
Bases:
TimeSeries
Traited class [tvb.datatypes.time_series.SensorsTSBase]¶
Attributes declared¶
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_orderingtvb.datatypes.time_series.TimeSeries.labels_ordering = List(of=<class ‘object’>, default=(‘Time’, ‘State Variable’, ‘Space’, ‘Mode’), required=True)
List of strings representing names of each data dimension
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- class tvb.datatypes.time_series.TimeSeries(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.time_series.TimeSeries]¶
Base time-series dataType.
Attributes declared¶
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_orderingtvb.datatypes.time_series.TimeSeries.labels_ordering = List(of=<class ‘object’>, default=(‘Time’, ‘State Variable’, ‘Space’, ‘Mode’), required=True)
List of strings representing names of each data dimension
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- data¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- labels_dimensions¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- property nr_dimensions¶
- sample_period¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- property sample_period_ms¶
:returns sample_period is ms
- sample_period_unit¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property sample_rate¶
:returns samples per second [Hz]
- property shape¶
- property space_labels¶
- start_time¶
Declares a float. This is different from Attr(field_type=float). The former enforces float subtypes. This allows any type that can be safely cast to the declared float type according to numpy rules.
Reading and writing this attribute is slower than a plain python attribute. In performance sensitive code you might want to use plain python attributes or even better local variables.
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- time¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property time_unit¶
- title¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- property variables_labels¶
- class tvb.datatypes.time_series.TimeSeriesEEG(**kwargs)[source]¶
Bases:
SensorsTSBase
Traited class [tvb.datatypes.time_series.TimeSeriesEEG]¶
A time series associated with a set of EEG sensors.
Attributes declared¶
sensors : tvb.datatypes.time_series.TimeSeriesEEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsEEG’>, default=None, required=True)
labels_ordering : tvb.datatypes.time_series.TimeSeriesEEG.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘SV’, ‘EEG Sensor’, ‘Mode’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.time_series.TimeSeriesMEG(**kwargs)[source]¶
Bases:
SensorsTSBase
Traited class [tvb.datatypes.time_series.TimeSeriesMEG]¶
A time series associated with a set of MEG sensors.
Attributes declared¶
sensors : tvb.datatypes.time_series.TimeSeriesMEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsMEG’>, default=None, required=True)
labels_ordering : tvb.datatypes.time_series.TimeSeriesMEG.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘SV’, ‘MEG Sensor’, ‘Mode’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.time_series.TimeSeriesRegion(**kwargs)[source]¶
Bases:
TimeSeries
Traited class [tvb.datatypes.time_series.TimeSeriesRegion]¶
A time-series associated with the regions of a connectivity.
Attributes declared¶
connectivity : tvb.datatypes.time_series.TimeSeriesRegion.connectivity = Attr(field_type=<class ‘tvb.datatypes.connectivity.Connectivity’>, default=None, required=True)
region_mapping_volume : tvb.datatypes.time_series.TimeSeriesRegion.region_mapping_volume = Attr(field_type=<class ‘tvb.datatypes.region_mapping.RegionVolumeMapping’>, default=None, required=False)
region_mapping : tvb.datatypes.time_series.TimeSeriesRegion.region_mapping = Attr(field_type=<class ‘tvb.datatypes.region_mapping.RegionMapping’>, default=None, required=False)
labels_ordering : tvb.datatypes.time_series.TimeSeriesRegion.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘State Variable’, ‘Region’, ‘Mode’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- connectivity¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- region_mapping¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- region_mapping_volume¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.time_series.TimeSeriesSEEG(**kwargs)[source]¶
Bases:
SensorsTSBase
Traited class [tvb.datatypes.time_series.TimeSeriesSEEG]¶
A time series associated with a set of Internal sensors.
Attributes declared¶
sensors : tvb.datatypes.time_series.TimeSeriesSEEG.sensors = Attr(field_type=<class ‘tvb.datatypes.sensors.SensorsInternal’>, default=None, required=True)
labels_ordering : tvb.datatypes.time_series.TimeSeriesSEEG.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘SV’, ‘sEEG Sensor’, ‘Mode’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- sensors¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.time_series.TimeSeriesSurface(**kwargs)[source]¶
Bases:
TimeSeries
Traited class [tvb.datatypes.time_series.TimeSeriesSurface]¶
A time-series associated with a Surface.
Attributes declared¶
surface : tvb.datatypes.time_series.TimeSeriesSurface.surface = Attr(field_type=<class ‘tvb.datatypes.surfaces.CorticalSurface’>, default=None, required=True)
labels_ordering : tvb.datatypes.time_series.TimeSeriesSurface.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘State Variable’, ‘Vertex’, ‘Mode’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- surface¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- class tvb.datatypes.time_series.TimeSeriesVolume(**kwargs)[source]¶
Bases:
TimeSeries
Traited class [tvb.datatypes.time_series.TimeSeriesVolume]¶
A time-series associated with a Volume.
Attributes declared¶
volume : tvb.datatypes.time_series.TimeSeriesVolume.volume = Attr(field_type=<class ‘tvb.datatypes.volumes.Volume’>, default=None, required=True)
labels_ordering : tvb.datatypes.time_series.TimeSeriesVolume.labels_ordering = List(of=<class ‘str’>, default=(‘Time’, ‘X’, ‘Y’, ‘Z’), required=True)
title : tvb.datatypes.time_series.TimeSeries.title = Attr(field_type=<class ‘str’>, default=None, required=True)
- datatvb.datatypes.time_series.TimeSeries.data = NArray(label=’Time-series data’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array of time-series data, with a shape of [tpts, :], where ‘:’ represents 1 or more dimensions
- labels_dimensionstvb.datatypes.time_series.TimeSeries.labels_dimensions = Attr(field_type=<class ‘dict’>, default={}, required=True)
A dictionary containing mappings of the form {‘dimension_name’ : [labels for this dimension] }
- timetvb.datatypes.time_series.TimeSeries.time = NArray(label=’Time-series time’, dtype=float64, default=None, dim_names=(), ndim=None, required=False)
An array of time values for the time-series, with a shape of [tpts,]. This is ‘time’ as returned by the simulator’s monitors.
start_time : tvb.datatypes.time_series.TimeSeries.start_time = Float(field_type=<class ‘float’>, default=0, required=True)
sample_period : tvb.datatypes.time_series.TimeSeries.sample_period = Float(field_type=<class ‘float’>, default=1.0, required=True)
sample_period_unit : tvb.datatypes.time_series.TimeSeries.sample_period_unit = Attr(field_type=<class ‘str’>, default=’ms’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- labels_ordering¶
The attribute is a list of values. Choices and type are reinterpreted as applying not to the list but to the elements of it
- summary_info()[source]¶
Gather scientifically interesting summary information from an instance of this datatype.
- volume¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
tracts
¶
module docstring .. moduleauthor:: Mihai Andrei <mihai.andrei@codemart.ro>
- class tvb.datatypes.tracts.Tracts(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.tracts.Tracts]¶
Datatype for results of diffusion imaging tractography.
Attributes declared¶
- verticestvb.datatypes.tracts.Tracts.vertices = NArray(label=’Vertex positions’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
An array specifying coordinates for the tracts vertices.
- tract_start_idxtvb.datatypes.tracts.Tracts.tract_start_idx = NArray(label=’Tract starting indices’, dtype=int64, default=None, dim_names=(), ndim=None, required=True)
Where is the first vertex of a tract in the vertex array
tract_region : tvb.datatypes.tracts.Tracts.tract_region = NArray(label=’Tract region index’, dtype=int64, default=None, dim_names=(), ndim=None, required=False)
An index used to find quickly all tract emerging from a region tract_region[i] is the region of the i’th tract. -1 represents the background
region_volume_map : tvb.datatypes.tracts.Tracts.region_volume_map = Attr(field_type=<class ‘tvb.datatypes.region_mapping.RegionVolumeMapping’>, default=None, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- region_volume_map¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.
- tract_region¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- tract_start_idx¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- property tracts_count¶
- vertices¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
volumes
¶
The Volume datatypes.
- class tvb.datatypes.volumes.Volume(**kwargs)[source]¶
Bases:
HasTraits
Traited class [tvb.datatypes.volumes.Volume]¶
Data defined on a regular grid in three dimensions.
Attributes declared¶
origin : tvb.datatypes.volumes.Volume.origin = NArray(label=’Volume origin coordinates’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
voxel_size : tvb.datatypes.volumes.Volume.voxel_size = NArray(label=’Voxel size’, dtype=float64, default=None, dim_names=(), ndim=None, required=True)
voxel_unit : tvb.datatypes.volumes.Volume.voxel_unit = Attr(field_type=<class ‘str’>, default=’mm’, required=True)
gid : tvb.basic.neotraits._core.HasTraits.gid = Attr(field_type=<class ‘uuid.UUID’>, default=None, required=True)
- origin¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- summary_info()[source]¶
A more structured __str__ A 2 column table represented as a dict of str->str The default __str__ and html representations of this object are derived from this table. Override this method and return such a table filled with instance information that informs the user about your instance
- voxel_size¶
Declares a numpy array. dtype enforces the dtype. The default dtype is float64. An optional symbolic shape can be given, as a tuple of Dim attributes from the owning class. The shape will be enforced, but no broadcasting will be done. domain declares what values are allowed in this array. It can be any object that can be checked for membership Defaults are checked if they are in the declared domain. For performance reasons this does not happen on every attribute set.
- voxel_unit¶
An Attr declares the following about the attribute it describes: * the type * a default value shared by all instances * if the value might be missing * documentation It will resolve to attributes on the instance.