Source code for tvb.datatypes.spectral

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#

"""

The Spectral datatypes.

.. moduleauthor:: Stuart A. Knock <Stuart@tvb.invalid>

"""
import numpy

from tvb.basic.neotraits.api import HasTraits, Attr, NArray, Int, Float, EnumAttr, TVBEnum
from tvb.datatypes import time_series


[docs]class WindowingFunctionsEnum(TVBEnum): HAMMING = "hamming" BARTLETT = "bartlett" BLACKMAN = "blackman" HANNING = "hanning"
[docs]class FourierSpectrum(HasTraits): """ Result of a Fourier Analysis. """ # Overwrite attribute from superclass array_data = NArray(dtype=numpy.complex128) source = Attr( field_type=time_series.TimeSeries, label="Source time-series", doc="Links to the time-series on which the FFT is applied.") segment_length = Float( label="Segment length", doc="""The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.""") windowing_function = EnumAttr( default=WindowingFunctionsEnum.HAMMING, required=False, label="Windowing function", doc="""The windowing function applied to each time segment prior to application of the FFT.""") amplitude = NArray(label="Amplitude") phase = NArray(label="Phase") power = NArray(label="Power") average_power = NArray(label="Average Power") normalised_average_power = NArray(label="Normalised Power", required=False) _frequency = None _freq_step = None _max_freq = None
[docs] def configure(self): """ compute dependent fields like amplitude """ self.compute_amplitude() self.compute_phase() self.compute_average_power() self.compute_normalised_average_power()
[docs] def summary_info(self): """ Gather scientifically interesting summary information from an instance of this datatype. """ return { "Spectral type": self.__class__.__name__, "Source": self.source.title, "Segment length": self.segment_length, "Windowing function": self.windowing_function, "Frequency step": self.freq_step, "Maximum frequency": self.max_freq }
@property def freq_step(self): """ Frequency step size of the complex Fourier spectrum.""" if self._freq_step is None: self._freq_step = 1.0 / self.segment_length msg = "%s: Frequency step size is %s" self.log.debug(msg % (str(self), str(self._freq_step))) return self._freq_step @property def max_freq(self): """ Amplitude of the complex Fourier spectrum.""" if self._max_freq is None: self._max_freq = 0.5 / self.source.sample_period msg = "%s: Max frequency is %s" self.log.debug(msg % (str(self), str(self._max_freq))) return self._max_freq @property def frequency(self): """ Frequencies represented the complex Fourier spectrum.""" if self._frequency is None: self._frequency = numpy.arange(self.freq_step, self.max_freq + self.freq_step, self.freq_step) return self._frequency
[docs] def compute_amplitude(self): """ Amplitude of the complex Fourier spectrum.""" self.amplitude = numpy.abs(self.array_data)
[docs] def compute_phase(self): """ Phase of the Fourier spectrum.""" self.phase = numpy.angle(self.array_data)
[docs] def compute_power(self): """ Power of the complex Fourier spectrum.""" self.power = numpy.abs(self.array_data) ** 2
[docs] def compute_average_power(self): """ Average-power of the complex Fourier spectrum.""" self.average_power = numpy.mean(numpy.abs(self.array_data) ** 2, axis=-1)
[docs] def compute_normalised_average_power(self): """ Normalised-average-power of the complex Fourier spectrum.""" self.normalised_average_power = (self.average_power / numpy.sum(self.average_power, axis=0))
[docs]class WaveletCoefficients(HasTraits): """ This class bundles all the elements of a Wavelet Analysis into a single object, including the input TimeSeries datatype and the output results as arrays (FloatArray) """ # Overwrite attribute from superclass array_data = NArray(dtype=numpy.complex128) source = Attr(field_type=time_series.TimeSeries, label="Source time-series") mother = Attr( field_type=str, label="Mother wavelet", default="morlet", doc="""A string specifying the type of mother wavelet to use, default is 'morlet'.""") # default to 'morlet' sample_period = Float(label="Sample period") # sample_rate = basic.Integer(label = "") inversely related frequencies = NArray( label="Frequencies", doc="A vector that maps scales to frequencies.") normalisation = Attr(field_type=str, label="Normalisation type") # 'unit energy' | 'gabor' q_ratio = Float(label="Q-ratio", default=5.0) amplitude = NArray(label="Amplitude") phase = NArray(label="Phase") power = NArray(label="Power") _frequency = None _time = None
[docs] def summary_info(self): """ Gather scientifically interesting summary information from an instance of this datatype. """ return { "Spectral type": self.__class__.__name__, "Source": self.source.title, "Wavelet type": self.mother, "Normalisation": self.normalisation, "Q-ratio": self.q_ratio, "Sample period": self.sample_period, "Number of scales": self.frequencies.shape[0], "Minimum frequency": self.frequencies[0], "Maximum frequency": self.frequencies[-1] }
@property def frequency(self): """ Frequencies represented by the wavelet spectrogram.""" if self._frequency is None: self._frequency = numpy.arange(self.frequencies.lo, self.frequencies.hi, self.frequencies.step) return self._frequency
[docs] def compute_amplitude(self): """ Amplitude of the complex Wavelet coefficients.""" self.amplitude = numpy.abs(self.array_data)
[docs] def compute_phase(self): """ Phase of the Wavelet coefficients.""" self.phase = numpy.angle(self.array_data)
[docs] def compute_power(self): """ Power of the complex Wavelet coefficients.""" self.power = numpy.abs(self.array_data) ** 2
[docs]class CoherenceSpectrum(HasTraits): """ Result of a NodeCoherence Analysis. """ # Overwrite attribute from superclass array_data = NArray() source = Attr( field_type=time_series.TimeSeries, label="Source time-series", doc="""Links to the time-series on which the node_coherence is applied.""") nfft = Int( label="Data-points per block", default=256, doc="""NOTE: must be a power of 2""") frequency = NArray(label="Frequency")
[docs] def summary_info(self): """ Gather scientifically interesting summary information from an instance of this datatype. """ return { "Spectral type": self.__class__.__name__, "Source": self.source.title, "Number of frequencies": self.frequency.shape[0], "Minimum frequency": self.frequency[0], "Maximum frequency": self.frequency[-1], "FFT length (time-points)": self.nfft }
[docs]class ComplexCoherenceSpectrum(HasTraits): """ Result of a NodeComplexCoherence Analysis. """ cross_spectrum = NArray( dtype=numpy.complex128, label="The cross spectrum", doc=""" A complex ndarray that contains the nodes x nodes cross spectrum for every frequency frequency and for every segment.""") array_data = NArray( dtype=numpy.complex128, label="Complex Coherence", doc="""The complex coherence coefficients calculated from the cross spectrum. The imaginary values of this complex ndarray represent the imaginary coherence.""") source = Attr( field_type=time_series.TimeSeries, label="Source time-series", doc="""Links to the time-series on which the node_coherence is applied.""") epoch_length = Float( label="Epoch length", doc="""The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.""") segment_length = Float( label="Segment length", doc="""The timeseries was segmented into equally sized blocks (overlapping if necessary), prior to the application of the FFT. The segement length determines the frequency resolution of the resulting spectra.""") windowing_function = Attr( field_type=str, label="Windowing function", doc="""The windowing function applied to each time segment prior to application of the FFT.""") _frequency = None _freq_step = None _max_freq = None spectrum_types = ["Imaginary", "Real", "Absolute"]
[docs] def summary_info(self): """ Gather scientifically interesting summary information from an instance of this datatype. """ return { "Spectral type": self.__class__.__name__, "Source": self.source.title, "Frequency step": self.freq_step, "Maximum frequency": self.max_freq, "Epoch length": self.epoch_length, "Segment length": self.segment_length, "Windowing function": self.windowing_function }
@property def freq_step(self): """ Frequency step size of the Complex Coherence Spectrum.""" if self._freq_step is None: self._freq_step = 1.0 / self.segment_length msg = "%s: Frequency step size is %s" self.log.debug(msg % (str(self), str(self._freq_step))) return self._freq_step @property def max_freq(self): """ Maximum frequency represented in the Complex Coherence Spectrum.""" if self._max_freq is None: self._max_freq = 0.5 / self.source.sample_period msg = "%s: Max frequency is %s" self.log.debug(msg % (str(self), str(self._max_freq))) return self._max_freq @property def frequency(self): """ Frequencies represented in the Complex Coherence Spectrum.""" if self._frequency is None: self._frequency = numpy.arange(self.freq_step, self.max_freq + self.freq_step, self.freq_step) return self._frequency