# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
LEMS2python module implements a DSL code generation using a TVB-specific LEMS-based DSL.
.. moduleauthor:: Michiel. A. van der Vlag <m.van.der.vlag@fz-juelich.de>
.. moduleauthor:: Marmaduke Woodman <marmaduke.woodman@univ-amu.fr>
Usage: - create an modelfile.xml
- import rateML
- make instance: rateml(model_filename, language, your/XMLfolder, 'your/generatedModelsfolder')
the current supported model framework languages are python and cuda.
for new models models/__init.py__ is auto_updated if model is unfamiliar to tvb for py models
model_class_name is the model_filename + 'T', so not to overwrite existing models. Be sure to add the t
when simulating the model in TVB
example model files:
epileptor.xml
generic2doscillatort.xml
kuramoto.xml
montbrio.xml
reducedwongwang.xml
"""
import os
import re
import argparse
import numpy as np
import tvb.simulator.models
from mako.template import Template
from tvb.basic.logger.builder import get_logger
from lems.model.model import Model
logger = get_logger(__name__)
[docs]class RateML:
def __init__(self, model_filename=None, language=None, XMLfolder=None, GENfolder=None):
self.args = self.parse_args()
self.model_filename = model_filename or self.args.model
language = language or self.args.language.lower()
try:
assert language in ('cuda', 'python', 'Cuda', 'Python', 'CUDA')
self.language = language.lower()
except AssertionError as e:
logger.error('Please choose between Python or Cuda %s', e)
exit()
self.XMLfolder = XMLfolder or self.args.source
self.GENfolder = GENfolder or self.args.destination
# set file locations
self.generated_model_location = self.set_generated_model_location()
self.xml_location = self.set_XML_model_folder()
# start templating
model_str, driver_str = self.render()
# write model to user submitted location
self.write_model_file(self.generated_model_location, model_str)
if self.language == 'cuda':
# write driver file to fixed ./run/ location
self.write_model_file(self.set_driver_location(), driver_str)
# for driver robustness also write XML to default location generatedModels folder for CUDA
if GENfolder != None:
default_save = os.path.join(self.default_generation_folder(), self.model_filename.lower() + '.c')
self.write_model_file(default_save, model_str)
# if it is a TVB.py model, it should be familiarized
if self.language.lower() == 'python':
self.familiarize_TVB(model_str)
[docs] def parse_args(self): # {{{
parser = argparse.ArgumentParser(description='Run XML model conversion.')
parser.add_argument('-m', '--model', default='rwongwang',
help="neural mass model to be converted")
parser.add_argument('-l', '--language', default='Python',
help="programming language output")
parser.add_argument('-s', '--source', default='',
help="source folder location")
parser.add_argument('-d', '--destination', default='',
help="destination folder location")
args, unknown = parser.parse_known_args()
return args
[docs] @staticmethod
def default_XML_folder():
here = os.path.dirname(os.path.abspath(__file__))
xmlpath = os.path.join(here, 'XMLmodels')
return xmlpath
[docs] def set_XML_model_folder(self):
folder = self.XMLfolder or self.default_XML_folder()
try:
location = os.path.join(folder, self.model_filename.lower() + '.xml')
assert os.path.isfile(location)
except AssertionError:
logger.error('XML folder %s does not contain %s', folder, self.model_filename + '.xml')
exit()
return location
[docs] @staticmethod
def default_generation_folder():
here = os.path.dirname(os.path.abspath(__file__))
modelpath = os.path.join(here, 'generatedModels')
return modelpath
[docs] def set_generated_model_location(self):
folder = self.GENfolder or self.default_generation_folder()
lan = self.language.lower()
if lan == 'python':
ext = '.py'
elif lan == 'cuda':
ext = '.c'
try:
location = os.path.join(folder)
assert os.path.isdir(location)
except AssertionError:
logger.error('Generation folder %s does not exist', location)
exit()
return os.path.join(folder, self.model_filename.lower() + ext)
[docs] def set_driver_location(self):
here = os.path.dirname(os.path.abspath(__file__))
return os.path.join(here, 'run', 'model_driver_' + self.model_filename + '.py')
[docs] def set_template(self, name):
here = os.path.dirname(os.path.abspath(__file__))
tmp_filename = os.path.join(here, 'tmpl8_' + name + '.py')
template = Template(filename=tmp_filename)
return template
[docs] def XSD_validate_XML(self):
"""Use own validation instead of LEMS because of slight difference in definition file"""
from lxml import etree
xsd_fname = os.path.join(os.path.abspath(os.path.dirname(__file__)), "rML_v0.xsd")
xmlschema = etree.XMLSchema(etree.parse(xsd_fname))
xmlschema.assertValid(etree.parse(self.xml_location))
logger.info("True validation of {0} against {1}".format(self.xml_location, xsd_fname))
[docs] def pp_bound(self, model):
# check if boundaries for state variables are present. contruct is not necessary in pymodels
# python only
svboundaries = False
for i, sv in enumerate(model.component_types['derivatives'].dynamics.state_variables):
if sv.exposure != 'None' and sv.exposure != '' and sv.exposure:
svboundaries = True
continue
return svboundaries
[docs] def pp_cplist(self, model):
# check for component_types containing coupling in name and gather data.
# multiple coupling functions could be defined in xml
# cuda only
couplinglist = list()
for i, cplists in enumerate(model.component_types):
if 'coupling' in cplists.name:
couplinglist.append(cplists)
return couplinglist
[docs] def pp_noise(self, model):
# only check whether noise is there, if so then activate it
# cuda only
noisepresent = False
for ct in (model.component_types):
if ct.name == 'noise':
noisepresent = True
# see if nsig derived parameter is present for noise
# cuda only
modellist = model.component_types['derivatives']
nsigpresent = False
if noisepresent == True:
for dprm in (modellist.derived_parameters):
if (dprm.name == 'nsig' or dprm.name == 'NSIG'):
nsigpresent = True
return noisepresent, nsigpresent
# check for power symbol and parse to python (**) or c power (powf(x, y))
[docs] def swap_language_specific_terms(self, model_str):
if self.language == 'cuda':
model_str = re.sub(r"\bpi\b", 'PI', model_str)
model_str = re.sub(r"\binf\b", 'INF', model_str)
for power in re.finditer(r"\{(.*?)(\^)(.*?)\}", model_str):
target = power.group(0)
powersplit = target.split('^')
if self.language == 'cuda':
pow = 'powf(' + powersplit[0].replace('{', '') + ', ' + powersplit[1].replace('}', '') + ')'
if self.language == 'python':
pow = powersplit[0].replace('{', '') + '**' + powersplit[1].replace('}', '')
model_str = re.sub(re.escape(target), pow, model_str)
return model_str
# setting the inital value for cuda models
# the entered range is splitted and a random value is generated within range
# if values are equal then that is the inital value
[docs] def init_statevariables(self, model):
modellist = model.component_types['derivatives'].dynamics.state_variables
for sv in modellist:
splitdim = list(sv.dimension.split(","))
sv_rnd = np.random.uniform(low=float(splitdim[0]), high=float(splitdim[1]))
model.component_types['derivatives'].dynamics.state_variables[sv.name].dimension = sv_rnd
[docs] def load_model(self):
"""Load model from filename"""
# instantiate LEMS lib
model = Model()
model.import_from_file(self.xml_location)
self.XSD_validate_XML()
# Do some preprocessing on the template to easify rendering
noisepresent, nsigpresent = self.pp_noise(model)
couplinglist = self.pp_cplist(model)
svboundaries = self.pp_bound(model)
if self.language == 'cuda':
self.init_statevariables(model)
return model, svboundaries, couplinglist, noisepresent, nsigpresent
[docs] def render(self):
"""
render_model start the mako templating.
this function is similar for all languages. its .render arguments are overloaded.
"""
model, svboundaries, couplinglist, noisepresent, nsigpresent = self.load_model()
derivative_list = model.component_types['derivatives']
model_str = self.render_model(derivative_list, svboundaries, couplinglist, noisepresent, nsigpresent)
model_str = self.swap_language_specific_terms(model_str)
# render driver only in case of cuda
if self.language == 'cuda':
driver_str = self.render_driver(derivative_list)
else:
driver_str = None
return model_str, driver_str
[docs] def render_model(self, derivative_list, svboundaries, couplinglist, noisepresent, nsigpresent):
if self.language == 'python':
model_class_name = self.model_filename.capitalize() + 'T'
if self.language == 'cuda':
model_class_name = self.model_filename
# start templating
model_str = self.set_template(self.language).render(
modelname=model_class_name, # all
const=derivative_list.constants, # all
dynamics=derivative_list.dynamics, # all
exposures=derivative_list.exposures, # all
params=derivative_list.parameters, # cuda
derparams=derivative_list.derived_parameters, # cuda
svboundaries=svboundaries, # python
coupling=couplinglist, # cuda
noisepresent=noisepresent, # cuda
nsigpresent=nsigpresent, # cuda
)
return model_str
[docs] def render_driver(self, derivative_list):
driver_str = self.set_template('driver').render(
model=self.model_filename,
XML=derivative_list,
)
return driver_str
[docs] def familiarize_TVB(self, model_str):
'''
Write new model to TVB model location and into init.py such it is familiar to TVB if not already present
This is for Python models only
'''
model_filename = self.model_filename
# set tvb location
TVB_model_location = os.path.join(os.path.dirname(tvb.simulator.models.__file__),
model_filename.lower() + 'T.py')
# next to user submitted location also write to default tvb location
self.write_model_file(TVB_model_location, model_str)
try:
doprint = True
modelenumnum = 0
modulemodnum = 0
with open(os.path.join(os.path.dirname(tvb.simulator.models.__file__), '__init__.py'), "r+") as f:
lines = f.readlines()
for num, line in enumerate(lines):
if (model_filename.upper() + 'T = ' + "\"" + model_filename.capitalize() + "T\"") in line:
doprint = False
elif ("class ModelsEnum(Enum):") in line:
modelenumnum = num
elif ("_module_models = {") in line:
modulemodnum = num
if doprint:
lines.insert(modelenumnum + 1, " " + model_filename.upper() + 'T = ' + "\"" +
model_filename.capitalize() + "T\"\n")
lines.insert(modulemodnum + 2, " " + "'" + model_filename.lower() + "T'" + ': '
+ "[ModelsEnum." + model_filename.upper() + "T],\n")
f.truncate(0)
f.seek(0)
f.writelines(lines)
logger.info("model file generated {}".format(model_filename))
except IOError as e:
logger.error('Writing TVB model to file failed: %s', e)
[docs] def write_model_file(self, model_location, model_str):
'''Write templated model to file'''
try:
with open(model_location, "w") as f:
f.writelines(model_str)
except IOError as e:
logger.error('Writing %s model to file failed: %s', self.language, e)
if __name__ == "__main__":
RateML()
# example for direct project implementation
# set the language for your model
# language='python'
# language='Cuda'
# choose an example or your own model
# model_filename = 'montbrio'
# model_filename = 'oscillator'
# model_filename = 'kuramoto'
# model_filename = 'rwongwang'
# model_filename = 'epileptor'
# start conversion to default model location
# RateML(model_filename, language)