Source code for tvb.adapters.datatypes.db.time_series

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
import json
from tvb.datatypes.time_series import *
from sqlalchemy import Column, Integer, ForeignKey, String, Float, Boolean
from sqlalchemy.orm import relationship
from tvb.adapters.datatypes.db.sensors import SensorsIndex
from tvb.adapters.datatypes.db.connectivity import ConnectivityIndex
from tvb.adapters.datatypes.db.region_mapping import RegionMappingIndex, RegionVolumeMappingIndex
from tvb.adapters.datatypes.db.surface import SurfaceIndex
from tvb.adapters.datatypes.db.volume import VolumeIndex
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.entities.model.model_datatype import DataType


[docs]class TimeSeriesIndex(DataType): id = Column(Integer, ForeignKey(DataType.id), primary_key=True) time_series_type = Column(String, nullable=False) data_ndim = Column(Integer, nullable=False) data_length_1d = Column(Integer) data_length_2d = Column(Integer) data_length_3d = Column(Integer) data_length_4d = Column(Integer) start_time = Column(Float, default=0) sample_period_unit = Column(String, nullable=False) sample_period = Column(Float, nullable=False) sample_rate = Column(Float) labels_ordering = Column(String, nullable=False) labels_dimensions = Column(String, nullable=False) has_volume_mapping = Column(Boolean, nullable=False, default=False) has_surface_mapping = Column(Boolean, nullable=False, default=False)
[docs] def get_extra_info(self): labels_dict = {} labels_dict["labels_ordering"] = self.labels_ordering labels_dict["labels_dimensions"] = self.labels_dimensions return labels_dict
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeries) -> None super(TimeSeriesIndex, self).fill_from_has_traits(datatype) self.title = datatype.title self.time_series_type = type(datatype).__name__ self.start_time = datatype.start_time self.sample_period_unit = datatype.sample_period_unit self.sample_period = datatype.sample_period self.sample_rate = datatype.sample_rate self.labels_ordering = json.dumps(datatype.labels_ordering) self.labels_dimensions = json.dumps(datatype.labels_dimensions) # REVIEW THIS. # In general constructing graphs here is a bad ideea # But these NArrayIndex-es can be treated as part of this entity # never to be referenced by any other row or table. if hasattr(datatype, 'data'): self.data_ndim = datatype.data.ndim self.fill_shape(datatype.data.shape)
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesIndex, self).fill_from_h5(h5_file) self.time_series_type = type(h5_file).__name__.replace('H5', '') self.title = h5_file.title.load() self.start_time = h5_file.start_time.load() self.sample_period_unit = h5_file.sample_period_unit.load() self.sample_period = h5_file.sample_period.load() self.sample_rate = h5_file.sample_rate.load() self.labels_ordering = json.dumps(h5_file.labels_ordering.load()) self.labels_dimensions = json.dumps(h5_file.labels_dimensions.load()) self.fill_shape(h5_file.data.shape)
[docs] def fill_shape(self, final_shape): self.data_ndim = len(final_shape) self.data_length_1d = final_shape[0] if self.data_ndim > 1: self.data_length_2d = final_shape[1] if self.data_ndim > 2: self.data_length_3d = final_shape[2] if self.data_ndim > 3: self.data_length_4d = final_shape[3]
[docs] @staticmethod def accepted_filters(): filters = DataType.accepted_filters() filters.update( {FilterChain.datatype + '.data_ndim': {'type': 'int', 'display': 'No of Dimensions', 'operations': ['==', '<', '>']}, FilterChain.datatype + '.sample_period': {'type': 'float', 'display': 'Sample Period', 'operations': ['==', '<', '>']}, FilterChain.datatype + '.sample_rate': {'type': 'float', 'display': 'Sample Rate', 'operations': ['==', '<', '>']}, FilterChain.datatype + '.title': {'type': 'string', 'display': 'Title', 'operations': ['==', '!=', 'like']} }) return filters
[docs] def get_data_shape(self): if self.data_ndim == 1: return self.data_length_1d if self.data_ndim == 2: return self.data_length_1d, self.data_length_2d if self.data_ndim == 3: return self.data_length_1d, self.data_length_2d, self.data_length_3d return self.data_length_1d, self.data_length_2d, self.data_length_3d, self.data_length_4d
[docs] def get_labels_for_dimension(self, idx): label_dimensions = json.loads(self.labels_dimensions) labels_ordering = json.loads(self.labels_ordering) return label_dimensions.get(labels_ordering[idx], ["0"])
[docs]class TimeSeriesEEGIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_sensors_gid = Column(String(32), ForeignKey(SensorsIndex.gid), nullable=not TimeSeriesEEG.sensors.required) sensors = relationship(SensorsIndex, foreign_keys=fk_sensors_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesEEG) -> None super(TimeSeriesEEGIndex, self).fill_from_has_traits(datatype) self.fk_sensors_gid = datatype.sensors.gid.hex # Because we had a ProjectionMatrix in the monitor self.has_surface_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesEEGIndex, self).fill_from_h5(h5_file) self.fk_sensors_gid = h5_file.sensors.load().hex self.has_surface_mapping = True
[docs]class TimeSeriesMEGIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_sensors_gid = Column(String(32), ForeignKey(SensorsIndex.gid), nullable=not TimeSeriesMEG.sensors.required) sensors = relationship(SensorsIndex, foreign_keys=fk_sensors_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesMEG) -> None super(TimeSeriesMEGIndex, self).fill_from_has_traits(datatype) self.fk_sensors_gid = datatype.sensors.gid.hex self.has_surface_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesMEGIndex, self).fill_from_h5(h5_file) self.fk_sensors_gid = h5_file.sensors.load().hex self.has_surface_mapping = True
[docs]class TimeSeriesSEEGIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_sensors_gid = Column(String(32), ForeignKey(SensorsIndex.gid), nullable=not TimeSeriesSEEG.sensors.required) sensors = relationship(SensorsIndex, foreign_keys=fk_sensors_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesSEEG) -> None super(TimeSeriesSEEGIndex, self).fill_from_has_traits(datatype) self.fk_sensors_gid = datatype.sensors.gid.hex self.has_surface_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesSEEGIndex, self).fill_from_h5(h5_file) self.fk_sensors_gid = h5_file.sensors.load().hex self.has_surface_mapping = True
[docs]class TimeSeriesRegionIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_connectivity_gid = Column(String(32), ForeignKey(ConnectivityIndex.gid), nullable=not TimeSeriesRegion.connectivity.required) connectivity = relationship(ConnectivityIndex, foreign_keys=fk_connectivity_gid, primaryjoin=ConnectivityIndex.gid == fk_connectivity_gid) fk_region_mapping_volume_gid = Column(String(32), ForeignKey(RegionVolumeMappingIndex.gid), nullable=not TimeSeriesRegion.region_mapping_volume.required) region_mapping_volume = relationship(RegionVolumeMappingIndex, foreign_keys=fk_region_mapping_volume_gid, primaryjoin=RegionVolumeMappingIndex.gid == fk_region_mapping_volume_gid) fk_region_mapping_gid = Column(String(32), ForeignKey(RegionMappingIndex.gid), nullable=not TimeSeriesRegion.region_mapping.required) region_mapping = relationship(RegionMappingIndex, foreign_keys=fk_region_mapping_gid, primaryjoin=RegionMappingIndex.gid == fk_region_mapping_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesRegion) -> None super(TimeSeriesRegionIndex, self).fill_from_has_traits(datatype) self.fk_connectivity_gid = datatype.connectivity.gid.hex if datatype.region_mapping_volume is not None: self.fk_region_mapping_volume_gid = datatype.region_mapping_volume.gid.hex self.has_volume_mapping = True if datatype.region_mapping is not None: self.fk_region_mapping_gid = datatype.region_mapping.gid.hex self.has_surface_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesRegionIndex, self).fill_from_h5(h5_file) self.fk_connectivity_gid = h5_file.connectivity.load().hex region_mapping_volume = h5_file.region_mapping_volume.load() if region_mapping_volume is not None: self.fk_region_mapping_volume_gid = region_mapping_volume.hex self.has_volume_mapping = True region_mapping = h5_file.region_mapping.load() if region_mapping is not None: self.fk_region_mapping_gid = region_mapping.hex self.has_surface_mapping = True
[docs]class TimeSeriesSurfaceIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_surface_gid = Column(String(32), ForeignKey(SurfaceIndex.gid), nullable=not TimeSeriesSurface.surface.required) surface = relationship(SurfaceIndex, foreign_keys=fk_surface_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesSurface) -> None super(TimeSeriesSurfaceIndex, self).fill_from_has_traits(datatype) self.fk_surface_gid = datatype.surface.gid.hex self.has_surface_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesSurfaceIndex, self).fill_from_h5(h5_file) self.fk_surface_gid = h5_file.surface.load().hex self.has_surface_mapping = True
[docs]class TimeSeriesVolumeIndex(TimeSeriesIndex): id = Column(Integer, ForeignKey(TimeSeriesIndex.id), primary_key=True) fk_volume_gid = Column(String(32), ForeignKey(VolumeIndex.gid), nullable=not TimeSeriesVolume.volume.required) volume = relationship(VolumeIndex, foreign_keys=fk_volume_gid)
[docs] def fill_from_has_traits(self, datatype): # type: (TimeSeriesVolume) -> None super(TimeSeriesVolumeIndex, self).fill_from_has_traits(datatype) self.fk_volume_gid = datatype.volume.gid.hex self.has_volume_mapping = True
[docs] def fill_from_h5(self, h5_file): super(TimeSeriesVolumeIndex, self).fill_from_h5(h5_file) self.fk_volume_gid = h5_file.volume.load().hex self.has_volume_mapping = True