Source code for tvb.adapters.datatypes.db.connectivity
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
from sqlalchemy import Column, Integer, ForeignKey, Boolean, Float
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.entities.model.model_datatype import DataType
from tvb.core.neotraits.db import from_ndarray
from tvb.datatypes.connectivity import Connectivity
[docs]class ConnectivityIndex(DataType):
id = Column(Integer, ForeignKey(DataType.id), primary_key=True)
number_of_regions = Column(Integer, nullable=False)
number_of_connections = Column(Integer, nullable=False)
undirected = Column(Boolean)
weights_min = Column(Float)
weights_max = Column(Float)
weights_mean = Column(Float)
tract_lengths_min = Column(Float)
tract_lengths_max = Column(Float)
tract_lengths_mean = Column(Float)
has_cortical_mask = Column(Boolean)
has_hemispheres_mask = Column(Boolean)
[docs] def fill_from_has_traits(self, datatype):
# type: (Connectivity) -> None
super(ConnectivityIndex, self).fill_from_has_traits(datatype)
self.has_cortical_mask = datatype.cortical is not None
self.has_hemispheres_mask = datatype.hemispheres is not None
self.number_of_regions = datatype.number_of_regions
self.number_of_connections = datatype.number_of_connections
self.undirected = datatype.undirected
self.weights_min, self.weights_max, self.weights_mean = from_ndarray(datatype.weights)
self.tract_lengths_min, self.tract_lengths_max, self.tract_lengths_mean = from_ndarray(datatype.tract_lengths)
@property
def display_name(self):
"""
Overwrite from superclass and add number of regions field
"""
previous = "Connectivity"
return previous + " [" + str(self.number_of_regions) + "]"
[docs] @staticmethod
def accepted_filters():
filters = DataType.accepted_filters()
filters.update({FilterChain.datatype + '.number_of_regions':
{'type': 'int', 'display': 'No of Regions', 'operations': ['==', '<', '>']}})
return filters