Source code for tvb.simulator.models.epileptor

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#

"""
Hindmarsh-Rose-Jirsa Epileptor model.
"""
import numpy
from .base import ModelNumbaDfun
from numba import guvectorize, float64
from tvb.basic.neotraits.api import NArray, List, Range, Final


@guvectorize([(float64[:],) * 20], '(n),(m)' + ',()' * 17 + '->(n)', nopython=True)
def _numba_dfun(y, c_pop, x0, Iext, Iext2, a, b, slope, tt, Kvf, c, d, r, Ks, Kf, aa, bb, tau, modification, ydot):
    "Gufunc for Hindmarsh-Rose-Jirsa Epileptor model equations."

    c_pop1 = c_pop[0]
    c_pop2 = c_pop[1]

    # population 1
    if y[0] < 0.0:
        ydot[0] = - a[0] * y[0] ** 2 + b[0] * y[0]
    else:
        ydot[0] = slope[0] - y[3] + 0.6 * (y[2] - 4.0) ** 2
    ydot[0] = tt[0] * (y[1] - y[2] + Iext[0] + Kvf[0] * c_pop1 + ydot[0] * y[0])
    ydot[1] = tt[0] * (c[0] - d[0] * y[0] ** 2 - y[1])

    # energy
    if y[2] < 0.0:
        ydot[2] = - 0.1 * y[2] ** 7
    else:
        ydot[2] = 0.0
    if modification[0]:
        h = x0[0] + 3 / (1 + numpy.exp(-(y[0] + 0.5) / 0.1))
    else:
        h = 4 * (y[0] - x0[0]) + ydot[2]
    ydot[2] = tt[0] * (r[0] * (h - y[2] + Ks[0] * c_pop1))

    # population 2
    ydot[3] = tt[0] * (-y[4] + y[3] - y[3] ** 3 + Iext2[0] + bb[0] * y[5] - 0.3 * (y[2] - 3.5) + Kf[0] * c_pop2)
    if y[3] < -0.25:
        ydot[4] = 0.0
    else:
        ydot[4] = aa[0] * (y[3] + 0.25)
    ydot[4] = tt[0] * ((-y[4] + ydot[4]) / tau[0])

    # filter
    ydot[5] = tt[0] * (-0.01 * (y[5] - 0.1 * y[0]))


[docs]class Epileptor(ModelNumbaDfun): r""" The Epileptor is a composite neural mass model of six dimensions which has been crafted to model the phenomenology of epileptic seizures. (see [Jirsaetal_2014]_) Equations and default parameters are taken from [Jirsaetal_2014]_. +------------------------------------------------------+ | Table 1 | +----------------------+-------------------------------+ | Parameter | Value | +======================+===============================+ | I_rest1 | 3.1 | +----------------------+-------------------------------+ | I_rest2 | 0.45 | +----------------------+-------------------------------+ | r | 0.00035 | +----------------------+-------------------------------+ | x_0 | -1.6 | +----------------------+-------------------------------+ | slope | 0.0 | +----------------------+-------------------------------+ | Integration parameter | +----------------------+-------------------------------+ | dt | 0.1 | +----------------------+-------------------------------+ | simulation_length | 4000 | +----------------------+-------------------------------+ | Noise | +----------------------+-------------------------------+ | nsig | [0., 0., 0., 1e-3, 1e-3, 0.] | +----------------------+-------------------------------+ | Jirsa et al. 2014 | +------------------------------------------------------+ .. figure :: img/Epileptor_01_mode_0_pplane.svg :alt: Epileptor phase plane .. [Jirsaetal_2014] Jirsa, V. K.; Stacey, W. C.; Quilichini, P. P.; Ivanov, A. I.; Bernard, C. *On the nature of seizure dynamics.* Brain, 2014. Variables of interest to be used by monitors: -y[0] + y[3] .. math:: \dot{x_{1}} &=& y_{1} - f_{1}(x_{1}, x_{2}) - z + I_{ext1} \\ \dot{y_{1}} &=& c - d x_{1}^{2} - y{1} \\ \dot{z} &=& \begin{cases} r(4 (x_{1} - x_{0}) - z-0.1 z^{7}) & \text{if } x<0 \\ r(4 (x_{1} - x_{0}) - z) & \text{if } x \geq 0 \end{cases} \\ \dot{x_{2}} &=& -y_{2} + x_{2} - x_{2}^{3} + I_{ext2} + 0.002 g - 0.3 (z-3.5) \\ \dot{y_{2}} &=& 1 / \tau (-y_{2} + f_{2}(x_{2}))\\ \dot{g} &=& -0.01 (g - 0.1 x_{1}) where: .. math:: f_{1}(x_{1}, x_{2}) = \begin{cases} a x_{1}^{3} - b x_{1}^2 & \text{if } x_{1} <0\\ -(slope - x_{2} + 0.6(z-4)^2) x_{1} &\text{if }x_{1} \geq 0 \end{cases} and: .. math:: f_{2}(x_{2}) = \begin{cases} 0 & \text{if } x_{2} <-0.25\\ a_{2}(x_{2} + 0.25) & \text{if } x_{2} \geq -0.25 \end{cases} Note Feb. 2017: the slow permittivity variable can be modify to account for the time difference between interictal and ictal states (see [Proixetal_2014]). .. [Proixetal_2014] Proix, T.; Bartolomei, F; Chauvel, P; Bernard, C; Jirsa, V.K. * Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy.* J Neurosci 2014, 34:15009-21. """ a = NArray( label=":math:`a`", default=numpy.array([1.0]), doc="Coefficient of the cubic term in the first state variable") b = NArray( label=":math:`b`", default=numpy.array([3.0]), doc="Coefficient of the squared term in the first state variabel") c = NArray( label=":math:`c`", default=numpy.array([1.0]), doc="Additive coefficient for the second state variable, \ called :math:`y_{0}` in Jirsa paper") d = NArray( label=":math:`d`", default=numpy.array([5.0]), doc="Coefficient of the squared term in the second state variable") r = NArray( label=":math:`r`", domain=Range(lo=0.0, hi=0.001, step=0.00005), default=numpy.array([0.00035]), doc="Temporal scaling in the third state variable, \ called :math:`1/\\tau_{0}` in Jirsa paper") s = NArray( label=":math:`s`", default=numpy.array([4.0]), doc="Linear coefficient in the third state variable") x0 = NArray( label=":math:`x_0`", domain=Range(lo=-3.0, hi=-1.0, step=0.1), default=numpy.array([-1.6]), doc="Epileptogenicity parameter") Iext = NArray( label=":math:`I_{ext}`", domain=Range(lo=1.5, hi=5.0, step=0.1), default=numpy.array([3.1]), doc="External input current to the first population") slope = NArray( label=":math:`slope`", domain=Range(lo=-16.0, hi=6.0, step=0.1), default=numpy.array([0.]), doc="Linear coefficient in the first state variable") Iext2 = NArray( label=":math:`I_{ext2}`", domain=Range(lo=0.0, hi=1.0, step=0.05), default=numpy.array([0.45]), doc="External input current to the second population") tau = NArray( label=r":math:`\tau`", default=numpy.array([10.0]), doc="Temporal scaling coefficient in fifth state variable") aa = NArray( label=":math:`aa`", default=numpy.array([6.0]), doc="Linear coefficient in fifth state variable") bb = NArray( label=":math:`bb`", default=numpy.array([2.0]), doc="Linear coefficient of lowpass excitatory coupling in fourth state variable") Kvf = NArray( label=":math:`K_{vf}`", default=numpy.array([0.0]), domain=Range(lo=0.0, hi=4.0, step=0.5), doc="Coupling scaling on a very fast time scale.") Kf = NArray( label=":math:`K_{f}`", default=numpy.array([0.0]), domain=Range(lo=0.0, hi=4.0, step=0.5), doc="Correspond to the coupling scaling on a fast time scale.") Ks = NArray( label=":math:`K_{s}`", default=numpy.array([0.0]), domain=Range(lo=-4.0, hi=4.0, step=0.1), doc="Permittivity coupling, that is from the fast time scale toward the slow time scale") tt = NArray( label=":math:`K_{tt}`", default=numpy.array([1.0]), domain=Range(lo=0.001, hi=10.0, step=0.001), doc="Time scaling of the whole system") modification = NArray( dtype=bool, label=":math:`modification`", default=numpy.array([False]), doc="When modification is True, then use nonlinear influence on z. \ The default value is False, i.e., linear influence.") state_variable_range = Final( default={ "x1": numpy.array([-2., 1.]), "y1": numpy.array([-20., 2.]), "z": numpy.array([2.0, 5.0]), "x2": numpy.array([-2., 0.]), "y2": numpy.array([0., 2.]), "g": numpy.array([-1., 1.]) }, label="State variable ranges [lo, hi]", doc="Typical bounds on state variables in the Epileptor model.") variables_of_interest = List( of=str, label="Variables watched by Monitors", choices=('x1', 'y1', 'z', 'x2', 'y2', 'g', 'x2 - x1'), default=("x2 - x1", 'z'), doc="Quantities of the Epileptor available to monitor.", ) state_variables = ('x1', 'y1', 'z', 'x2', 'y2', 'g') _nvar = 6 cvar = numpy.array([0, 3], dtype=numpy.int32) # should these not be constant Attr's? cvar.setflags(write=False) # todo review this def _numpy_dfun(self, state_variables, coupling, local_coupling=0.0, array=numpy.array, where=numpy.where, concat=numpy.concatenate): y = state_variables ydot = numpy.empty_like(state_variables) Iext = self.Iext + local_coupling * y[0] c_pop1 = coupling[0, :] c_pop2 = coupling[1, :] # population 1 if_ydot0 = - self.a * y[0] ** 2 + self.b * y[0] else_ydot0 = self.slope - y[3] + 0.6 * (y[2] - 4.0) ** 2 ydot[0] = self.tt * (y[1] - y[2] + Iext + self.Kvf * c_pop1 + where(y[0] < 0., if_ydot0, else_ydot0) * y[0]) ydot[1] = self.tt * (self.c - self.d * y[0] ** 2 - y[1]) # energy if_ydot2 = - 0.1 * y[2] ** 7 else_ydot2 = 0 if self.modification: h = self.x0 + 3. / (1. + numpy.exp(- (y[0] + 0.5) / 0.1)) else: h = 4 * (y[0] - self.x0) + where(y[2] < 0., if_ydot2, else_ydot2) ydot[2] = self.tt * (self.r * (h - y[2] + self.Ks * c_pop1)) # population 2 ydot[3] = self.tt * ( -y[4] + y[3] - y[3] ** 3 + self.Iext2 + self.bb * y[5] - 0.3 * (y[2] - 3.5) + self.Kf * c_pop2) if_ydot4 = 0 else_ydot4 = self.aa * (y[3] + 0.25) ydot[4] = self.tt * ((-y[4] + where(y[3] < -0.25, if_ydot4, else_ydot4)) / self.tau) # filter ydot[5] = self.tt * (-0.01 * (y[5] - 0.1 * y[0])) return ydot
[docs] def dfun(self, x, c, local_coupling=0.0): r""" Computes the derivatives of the state variables of the Epileptor with respect to time. Implementation note: we expect this version of the Epileptor to be used in a vectorized manner. Concretely, y has a shape of (6, n) where n is the number of nodes in the network. An consequence is that the original use of if/else is translated by calculated both the true and false forms and mixing them using a boolean mask. Variables of interest to be used by monitors: -y[0] + y[3] .. math:: \dot{x_{1}} &=& y_{1} - f_{1}(x_{1}, x_{2}) - z + I_{ext1} \\ \dot{y_{1}} &=& c - d x_{1}^{2} - y{1} \\ \dot{z} &=& \begin{cases} r(4 (x_{1} - x_{0}) - z-0.1 z^{7}) & \text{if } x<0 \\ r(4 (x_{1} - x_{0}) - z) & \text{if } x \geq 0 \end{cases} \\ \dot{x_{2}} &=& -y_{2} + x_{2} - x_{2}^{3} + I_{ext2} + 0.002 g - 0.3 (z-3.5) \\ \dot{y_{2}} &=& 1 / \tau (-y_{2} + f_{2}(x_{2}))\\ \dot{g} &=& -0.01 (g - 0.1 x_{1}) where: .. math:: f_{1}(x_{1}, x_{2}) = \begin{cases} a x_{1}^{3} - b x_{1}^2 & \text{if } x_{1} <0\\ -(slope - x_{2} + 0.6(z-4)^2) x_{1} &\text{if }x_{1} \geq 0 \end{cases} and: .. math:: f_{2}(x_{2}) = \begin{cases} 0 & \text{if } x_{2} <-0.25\\ a_{2}(x_{2} + 0.25) & \text{if } x_{2} \geq -0.25 \end{cases} """ x_ = x.reshape(x.shape[:-1]).T c_ = c.reshape(c.shape[:-1]).T Iext = self.Iext + local_coupling * x[0, :, 0] deriv = _numba_dfun(x_, c_, self.x0, Iext, self.Iext2, self.a, self.b, self.slope, self.tt, self.Kvf, self.c, self.d, self.r, self.Ks, self.Kf, self.aa, self.bb, self.tau, self.modification) return deriv.T[..., numpy.newaxis]
[docs]class Epileptor2D(ModelNumbaDfun): r""" Two-dimensional reduction of the Epileptor. .. moduleauthor:: courtiol.julie@gmail.com Taking advantage of time scale separation and focusing on the slower time scale, the five-dimensional Epileptor reduces to a two-dimensional system (see [Proixetal_2014, Proixetal_2017]). Note: the slow permittivity variable can be modify to account for the time difference between interictal and ictal states (see [Proixetal_2014]). Equations and default parameters are taken from [Proixetal_2014]: .. math:: \dot{x_{1,i}} &=& - x_{1,i}^{3} - 2x_{1,i}^{2} + 1 - z_{i} + I_{ext1,i} \\ \dot{z_{i}} &=& r(h - z_{i}) with .. math:: h = \begin{cases} x_{0} + 3 / (exp((x_{1} + 0.5)/0.1)) & \text{if } modification\\ 4 (x_{1,i} - x_{0}) & \text{else } \end{cases} References: [Proixetal_2014] Proix, T.; Bartolomei, F; Chauvel, P; Bernard, C; Jirsa, V.K. * Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy.* J Neurosci 2014, 34:15009-21. [Proixetal_2017] Proix, T.; Bartolomei, F; Guye, M.; Jirsa, V.K. *Individual brain structure and modelling predict seizure propagation.* Brain 2017, 140; 641–654. """ a = NArray( label=":math:`a`", default=numpy.array([1.0]), doc="Coefficient of the cubic term in the first state-variable.") b = NArray( label=":math:`b`", default=numpy.array([3.0]), doc="Coefficient of the squared term in the first state-variable.") c = NArray( label=":math:`c`", default=numpy.array([1.0]), doc="Additive coefficient for the second state-variable x_{2}, \ called :math:`y_{0}` in Jirsa paper.") d = NArray( label=":math:`d`", default=numpy.array([5.0]), doc="Coefficient of the squared term in the second state-variable x_{2}.") r = NArray( label=":math:`r`", domain=Range(lo=0.0, hi=0.001, step=0.00005), default=numpy.array([0.00035]), doc=r"Temporal scaling in the slow state-variable, \ called :math:`1\tau_{0}` in Jirsa paper (see class Epileptor).") x0 = NArray( label=":math:`x_0`", domain=Range(lo=-3.0, hi=-1.0, step=0.1), default=numpy.array([-1.6]), doc="Epileptogenicity parameter.") Iext = NArray( label=":math:`I_{ext}`", domain=Range(lo=1.5, hi=5.0, step=0.1), default=numpy.array([3.1]), doc="External input current to the first state-variable.") slope = NArray( label=":math:`slope`", domain=Range(lo=-16.0, hi=6.0, step=0.1), default=numpy.array([0.]), doc="Linear coefficient in the first state-variable.") Kvf = NArray( label=":math:`K_{vf}`", default=numpy.array([0.0]), domain=Range(lo=0.0, hi=4.0, step=0.5), doc="Coupling scaling on a very fast time scale.") Ks = NArray( label=":math:`K_{s}`", default=numpy.array([0.0]), domain=Range(lo=-4.0, hi=4.0, step=0.1), doc="Permittivity coupling, that is from the fast time scale toward the slow time scale.") tt = NArray( label=":math:`tt`", default=numpy.array([1.0]), domain=Range(lo=0.001, hi=1.0, step=0.001), doc="Time scaling of the whole system to the system in real time.") modification = NArray( dtype=bool, label=":math:`modification`", default=numpy.array([False]), doc="When modification is True, then use nonlinear influence on z. \ The default value is False, i.e., linear influence.") state_variable_range = Final( default={"x1": numpy.array([-2., 1.]), "z": numpy.array([2.0, 5.0])}, label="State variable ranges [lo, hi]", doc="Typical bounds on state-variables in the Epileptor 2D model.") variables_of_interest = List( of=str, label="Variables watched by Monitors", choices=('x1', 'z'), default=('x1',), doc="Quantities of the Epileptor 2D available to monitor.") state_variables = ('x1', 'z') _nvar = 2 cvar = numpy.array([0], dtype=numpy.int32) def _numpy_dfun(self, state_variables, coupling, local_coupling=0.0, array=numpy.array, where=numpy.where, concat=numpy.concatenate): y = state_variables ydot = numpy.empty_like(state_variables) Iext = self.Iext + local_coupling * y[0] c_pop = coupling[0, :] # population 1 if_ydot0 = self.a * y[0] ** 2 + (self.d - self.b) * y[0] else_ydot0 = - self.slope - 0.6 * (y[1] - 4.0) ** 2 + self.d * y[0] ydot[0] = self.tt * (self.c - y[1] + Iext + self.Kvf * c_pop - (where(y[0] < 0., if_ydot0, else_ydot0)) * y[0]) # energy if_ydot1 = - 0.1 * y[1] ** 7 else_ydot1 = 0 if self.modification: h = self.x0 + 3. / (1. + numpy.exp(- (y[0] + 0.5) / 0.1)) else: h = 4 * (y[0] - self.x0) + where(y[1] < 0., if_ydot1, else_ydot1) ydot[1] = self.tt * (self.r * (h - y[1] + self.Ks * c_pop)) return ydot
[docs] def dfun(self, x, c, local_coupling=0.0): r""" Computes the derivatives of the state-variables of the Epileptor 2D with respect to time. Equations and default parameters are taken from [Proixetal_2014]: .. math:: \dot{x_{1,i}} &=& - x_{1,i}^{3} - 2x_{1,i}^{2} + 1 - z_{i} + I_{ext1,i} \\ \dot{z_{i}} &=& r(h - z_{i}) with .. math:: h = \begin{cases} x_{0} + 3 / (exp((x_{1} + 0.5)/0.1)) & \text{if } modification\\ 4 (x_{1,i} - x_{0}) & \text{else } \end{cases} """ x_ = x.reshape(x.shape[:-1]).T c_ = c.reshape(c.shape[:-1]).T Iext = self.Iext + local_coupling * x[0, :, 0] deriv = _numba_dfun_epi2d(x_, c_, self.x0, Iext, self.a, self.b, self.slope, self.c, self.d, self.r, self.Kvf, self.Ks, self.tt, self.modification) return deriv.T[..., numpy.newaxis]
@guvectorize([(float64[:],) * 15], '(n),(m)' + ',()' * 12 + '->(n)', nopython=True) def _numba_dfun_epi2d(y, c_pop, x0, Iext, a, b, slope, c, d, r, Kvf, Ks, tt, modification, ydot): "Gufunction for Epileptor 2D model equations." c_pop = c_pop[0] # population 1 if y[0] < 0.0: ydot[0] = a[0] * y[0] ** 2 + (d[0] - b[0]) * y[0] else: ydot[0] = - slope[0] - 0.6 * (y[1] - 4.0) ** 2 + d[0] * y[0] ydot[0] = tt[0] * (c[0] - y[1] + Iext[0] + Kvf[0] * c_pop - ydot[0] * y[0]) # energy if y[1] < 0.0: ydot[1] = - 0.1 * y[1] ** 7 else: ydot[1] = 0.0 if modification[0]: h = x0[0] + 3. / (1. + numpy.exp(- (y[0] + 0.5) / 0.1)) else: h = 4 * (y[0] - x0[0]) + ydot[1] ydot[1] = tt[0] * (r[0] * (h - y[1] + Ks[0] * c_pop))