Source code for tvb.simulator.backend.nb_mpr

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#

"""
Numba backend which uses templating to generate simulation
code.

.. moduleauthor:: Marmaduke Woodman <marmaduke.woodman@univ-amu.fr>

"""

import os
import importlib
import numpy as np
import autopep8

from .templates import MakoUtilMix
from tvb.simulator.lab import *


[docs]class NbMPRBackend(MakoUtilMix):
[docs] def build_py_func(self, template_source, content, name='kernel', print_source=False, modname=None): "Build and retrieve one or more Python functions from template." source = self.render_template(template_source, content) source = autopep8.fix_code(source) if print_source: print(self.insert_line_numbers(source)) if modname is not None: return self.eval_module(source, name, modname) else: return self.eval_source(source, name)
[docs] def eval_source(self, source, name): globals_ = {} try: exec(source, globals_) except Exception as exc: if not print_source: print(self._insert_line_numbers(source)) raise exc fns = [globals_[n] for n in name.split(',')] return fns[0] if len(fns)==1 else fns
[docs] def eval_module(self, source, name, modname): here = os.path.abspath(os.path.dirname(__file__)) genp = os.path.join(here, 'templates', 'generated') with open(f'{genp}/{modname}.py', 'w') as fd: fd.write(source) fullmodname = f'tvb.simulator.backend.templates.generated.{modname}' mod = importlib.import_module(fullmodname) fns = [getattr(mod,n) for n in name.split(',')] return fns[0] if len(fns)==1 else fns
[docs] def check_compatibility(self, sim): def check_choices(val, choices): if not isinstance(val, choices): raise NotImplementedError("Unsupported simulator component. Given: {}\nExpected one of: {}".format(val, choices)) # monitors if len(sim.monitors) > 1: raise NotImplementedError("Configure with one monitor.") check_choices(sim.monitors[0], (monitors.Raw, monitors.TemporalAverage)) # integrators check_choices(sim.integrator, integrators.HeunStochastic) # models check_choices(sim.model, models.MontbrioPazoRoxin) # coupling check_choices(sim.coupling, coupling.Linear) # surface if sim.surface is not None: raise NotImplementedError("Surface simulation not supported.")
# stimulus evaluated outside the backend, no restrictions
[docs] def run_sim(self, sim, nstep=None, simulation_length=None, chunksize=100000, compatibility_mode=False, print_source=False): assert nstep is not None or simulation_length is not None or sim.simulation_length is not None self.check_compatibility(sim) if nstep is None: if simulation_length is None: simulation_length = sim.simulation_length nstep = int(np.ceil(simulation_length/sim.integrator.dt)) if isinstance(sim.monitors[0], monitors.Raw): svar_bufs = self._run_sim_plain(sim, nstep, compatibility_mode=compatibility_mode, print_source=print_source) time = np.arange(svar_bufs[0].shape[1]) * sim.integrator.dt elif isinstance(sim.monitors[0], monitors.TemporalAverage): svar_bufs = self._run_sim_tavg_chunked(sim, nstep, chunksize=chunksize, compatibility_mode=compatibility_mode, print_source=print_source) T = sim.monitors[0].period time = np.arange(svar_bufs[0].shape[1]) * T + 0.5 * T else: raise NotImplementedError("Only Raw or TemporalAverage monitors supported.") data = np.concatenate( [svar_buf.T[:,np.newaxis,:, np.newaxis] for svar_buf in svar_bufs], axis=1 ) return (time, data),
def _run_sim_plain(self, sim, nstep=None, compatibility_mode=False, print_source=True): template = '<%include file="nb-montbrio.py.mako"/>' content = dict( compatibility_mode=compatibility_mode, sim=sim ) integrate = self.build_py_func(template, content, name='integrate', print_source=print_source) horizon = sim.connectivity.horizon buf_len = horizon + nstep N = sim.connectivity.number_of_regions gf = sim.integrator.noise.gfun(None) svar_bufs = [buf for buf in sim.integrator.noise.generate( shape=(sim.model.nvar,N,buf_len) ) * gf] for i, svar_buf in enumerate(svar_bufs): svar_buf[:,:horizon] = np.roll(sim.history.buffer[:,i,:,0], -1, axis=0).T if sim.stimulus is None: stimulus = None else: sim.stimulus.configure_space() sim.stimulus.configure_time(np.arange(nstep)*sim.integrator.dt) stimulus = sim.stimulus() svar_bufs = self._run_integrate( integrate, sim, N, nstep, svar_bufs, stimulus) return [svar_buf[:,horizon:] for svar_buf in svar_bufs] def _run_integrate(self, integrate, sim, N, nstep, svar_bufs, stimulus): return integrate( N = N, dt = sim.integrator.dt, nstep = nstep, i0 = sim.connectivity.horizon, **dict(zip(sim.model.state_variables,svar_bufs)), weights = sim.connectivity.weights, idelays = sim.connectivity.idelays, parmat = sim.model.spatial_parameter_matrix.T, stimulus = stimulus ) def _time_average(self, ts, istep): N, T = ts.shape return np.mean(ts.reshape(N,T//istep,istep),-1) # length of ts better be multiple of istep def _run_sim_tavg_chunked(self, sim, nstep, chunksize, compatibility_mode=False, print_source=False): template = '<%include file="nb-montbrio.py.mako"/>' content = dict(sim=sim, compatibility_mode=compatibility_mode) integrate = self.build_py_func(template, content, name='integrate', print_source=print_source) # chunksize in number of steps horizon = sim.connectivity.horizon N = sim.connectivity.number_of_regions gf = sim.integrator.noise.gfun(None) tavg_steps=sim.monitors[0].istep assert tavg_steps < chunksize assert chunksize % tavg_steps == 0 tavg_chunksize = chunksize // tavg_steps assert nstep % tavg_steps == 0 svar_outs = [svar_out for svar_out in np.zeros((sim.model.nvar,N,nstep//tavg_steps))] svar_bufs = [buf for buf in sim.integrator.noise.generate( shape=(sim.model.nvar,N,chunksize+horizon) ) * gf] for i, svar_buf in enumerate(svar_bufs): svar_buf[:,:horizon] = np.roll(sim.history.buffer[:,i,:,0], -1, axis=0).T for chunk, _ in enumerate(range(horizon, nstep+horizon, chunksize)): if sim.stimulus is None: stimulus = None else: sim.stimulus.configure_space() sim.stimulus.configure_time( np.arange(chunk*chunksize, (chunk+1)*chunksize)*sim.integrator.dt ) stimulus = sim.stimulus() svar_bufs = self._run_integrate( integrate, sim, N, chunksize, svar_bufs, stimulus) tavg_chunk = chunk * tavg_chunksize svar_chunks = [self._time_average(svar[:, horizon:], tavg_steps) for svar in svar_bufs] if tavg_chunk+tavg_chunksize > svar_outs[0].shape[1]: cutoff = tavg_chunk+tavg_chunksize - svar_outs[0].shape[1] for svar_chunk in svar_chunks: svar_chunk = svar_chunk[:,:-cutoff] for svar_out, svar_chunk in zip (svar_outs, svar_chunks): svar_out[:,tavg_chunk:tavg_chunk+tavg_chunksize] = svar_chunk for svar_buf in svar_bufs: svar_buf[:,:horizon] = svar_buf[:,-horizon:] for svar_buf, svar_noise in zip(svar_bufs, sim.integrator.noise.generate( shape=(sim.model.nvar,N,chunksize) ) * gf): svar_buf[:,horizon:] = svar_noise return svar_outs