Source code for tvb.rateML.generatedModels.kuramoto

from tvb.simulator.models.base import Model, ModelNumbaDfun
import numpy
from numpy import *
from numba import guvectorize, float64
from tvb.basic.neotraits.api import NArray, Final, List, Range

[docs]class KuramotoT(ModelNumbaDfun): omega = NArray( label=":math:`omega`", default=numpy.array([60.0 * 2.0 * 3.1415927 / 1e3]), doc="""""" ) state_variable_range = Final( label="State Variable ranges [lo, hi]", default={"V": numpy.array([0.0, 0.0])}, doc="""state variables""" ) state_variable_boundaries = Final( label="State Variable boundaries [lo, hi]", default={"V": numpy.array([-2, 1])}, ) variables_of_interest = List( of=str, label="Variables or quantities available to Monitors", choices=('V', ), default=('V', ), doc="Variables to monitor" ) state_variables = ['V'] _nvar = 1 cvar = numpy.array([0,], dtype = numpy.int32)
[docs] def dfun(self, vw, c, local_coupling=0.0): vw_ = vw.reshape(vw.shape[:-1]).T c_ = c.reshape(c.shape[:-1]).T deriv = _numba_dfun_KuramotoT(vw_, c_, self.omega, local_coupling) return deriv.T[..., numpy.newaxis]
@guvectorize([(float64[:], float64[:], float64, float64, float64[:])], '(n),(m)' + ',()'*2 + '->(n)', nopython=True) def _numba_dfun_KuramotoT(vw, coupling, omega, local_coupling, dx): "Gufunc for KuramotoT model equations." # long-range coupling c_pop0 = coupling[0] V = vw[0] dx[0] = omega + c_pop0