Source code for tvb.core.neotraits._h5accessors

# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#

import abc
import json
import typing
import uuid
import numpy
import scipy.sparse

from tvb.basic.neotraits.api import HasTraits, Attr, NArray, Range, TVBEnum
from tvb.datatypes import equations
from tvb.storage.h5.file.exceptions import MissingDataSetException


[docs]class Accessor(object, metaclass=abc.ABCMeta): def __init__(self, trait_attribute, h5file, name=None): # type: (Attr, H5File, str) -> None """ :param trait_attribute: A traited attribute :param h5file: The parent H5file that contains this Accessor :param name: The name of the dataset or attribute in the h5 file. It defaults to the name of the associated traited attribute. If the traited attribute is not a member of a HasTraits then it has no name and you have to provide this parameter """ self.owner = h5file self.trait_attribute = trait_attribute if name is None: name = trait_attribute.field_name self.field_name = name if self.field_name is None: raise ValueError('Independent Accessor {} needs a name'.format(self))
[docs] @abc.abstractmethod def load(self): pass
[docs] @abc.abstractmethod def store(self, val): pass
def __repr__(self): cls = type(self) return '<{}.{}({}, name="{}")>'.format( cls.__module__, cls.__name__, self.trait_attribute, self.field_name )
[docs]class Scalar(Accessor): """ A scalar in a h5 file that corresponds to a traited attribute. Serialized as a global h5 attribute """
[docs] def store(self, val): # type: (typing.Union[str, int, float]) -> None # noinspection PyProtectedMember val = self.trait_attribute._validate_set(None, val) if val is not None: self.owner.storage_manager.set_metadata({self.field_name: val})
[docs] def load(self): # type: () -> typing.Union[str, int, float] # assuming here that the h5 will return the type we stored. # if paranoid do self.trait_attribute.field_type(value) if self.owner.metadata_cache is None: self.owner.metadata_cache = self.owner.storage_manager.get_metadata() if self.field_name in self.owner.metadata_cache: return self.owner.metadata_cache[self.field_name] else: raise MissingDataSetException(self.field_name)
[docs]class Uuid(Scalar):
[docs] def store(self, val): # type: (uuid.UUID) -> None if val is None and not self.trait_attribute.required: # this is an optional reference and it is missing return # noinspection PyProtectedMember if not isinstance(val, uuid.UUID): raise TypeError("expected uuid.UUID got {}".format(type(val))) # urn is a standard encoding, that is obvious an uuid # str(gid) is more ambiguous self.owner.storage_manager.set_metadata({self.field_name: val.urn})
[docs] def load(self): # type: () -> uuid.UUID # TODO: handle inexistent field? metadata = self.owner.storage_manager.get_metadata() if self.field_name in metadata: return uuid.UUID(metadata[self.field_name]) return None
[docs]class Enum(Scalar):
[docs] def store(self, val): if val is not None: self.owner.storage_manager.set_metadata({self.field_name: val.value})
[docs] def load(self): metadata = self.owner.storage_manager.get_metadata() if self.field_name in metadata: return TVBEnum.string_to_enum(list(self.trait_attribute.field_type), str(metadata[self.field_name]))
[docs]class DataSetMetaData(object): """ simple container for dataset metadata Useful as a cache of global min max values. Viewers rely on these for colorbars. """ # noinspection PyShadowingBuiltins def __init__(self, min, max, mean, is_finite=True, has_complex=False): self.min, self.max, self.mean = min, max, mean self.is_finite = is_finite self.has_complex = has_complex
[docs] @classmethod def from_array(cls, array): try: return cls(min=array.min(), max=array.max(), mean=array.mean(), is_finite=numpy.isfinite(array).all().item(), has_complex=numpy.iscomplex(array).any().item()) except (TypeError, ValueError): # likely a string array return cls(min=None, max=None, mean=None)
[docs] @classmethod def from_dict(cls, dikt): return cls(min=dikt['Minimum'], max=dikt['Maximum'], mean=dikt['Mean'], is_finite=dikt['IsFinite'], has_complex=dikt["HasComplex"])
[docs] def to_dict(self): return {'Minimum': self.min, 'Maximum': self.max, 'Mean': self.mean, 'IsFinite': self.is_finite, 'HasComplex': self.has_complex}
[docs] def merge(self, other): self.min = min(self.min, other.min) self.max = max(self.max, other.max) self.mean = (self.mean + other.mean) / 2 self.is_finite = self.is_finite and other.is_finite self.has_complex = self.has_complex or other.has_complex
[docs]class DataSet(Accessor): """ A dataset in a h5 file that corresponds to a traited NArray. """ def __init__(self, trait_attribute, h5file, name=None, expand_dimension=-1): # type: (NArray, H5File, str, int) -> None """ :param trait_attribute: A traited attribute :param h5file: The parent H5file that contains this Accessor :param name: The name of the dataset in the h5 file. It defaults to the name of the associated traited attribute. If the traited attribute is not a member of a HasTraits then it has no name and you have to provide this parameter :param expand_dimension: An int designating a dimension of the array that may grow. """ super(DataSet, self).__init__(trait_attribute, h5file, name) self.expand_dimension = expand_dimension # Cache metadata for expandable DataSets to avoid multiple reads/writes at append time self.meta = None
[docs] def append(self, data, close_file=True, grow_dimension=None): # type: (numpy.ndarray, bool, int) -> None """ Method to be called when it is necessary to write slices of data for a large dataset, eg. TimeSeries. Metdata for such datasets is written only at file close time, see H5File.close method. """ if not grow_dimension: grow_dimension = self.expand_dimension self.owner.storage_manager.append_data( data, self.field_name, grow_dimension=grow_dimension, close_file=close_file ) # update the cached array min max metadata values new_meta = DataSetMetaData.from_array(numpy.array(data)) if self.meta: self.meta.merge(new_meta) else: # this must be a new file, nothing to merge, set the new meta self.meta = new_meta self.owner.expandable_datasets.append(self)
[docs] def store(self, data): # type: (numpy.ndarray) -> None # noinspection PyProtectedMember data = self.trait_attribute._validate_set(None, data) if data is None: return self.owner.storage_manager.store_data(data, self.field_name) # cache some array information self.owner.storage_manager.set_metadata( DataSetMetaData.from_array(data).to_dict(), self.field_name )
[docs] def load(self): # type: () -> numpy.ndarray if not self.trait_attribute.required: return self.owner.storage_manager.get_data(self.field_name, ignore_errors=True) return self.owner.storage_manager.get_data(self.field_name)
def __getitem__(self, data_slice): # type: (typing.Tuple[slice, ...]) -> numpy.ndarray return self.owner.storage_manager.get_data(self.field_name, data_slice=data_slice) @property def shape(self): # type: () -> typing.Tuple[int] return self.owner.storage_manager.get_data_shape(self.field_name)
[docs] def get_cached_metadata(self): """ Returns cached properties of this dataset, like min max mean etc. This cache is useful for large, expanding datasets, when we want to avoid loading the whole dataset just to compute a max. """ if self in self.owner.expandable_datasets: return self.meta meta = self.owner.storage_manager.get_metadata(self.field_name) return DataSetMetaData.from_dict(meta)
[docs]class EquationScalar(Accessor): """ An attribute in a h5 file that corresponds to a traited Equation. """ KEY_TYPE = 'type' KEY_PARAMETERS = 'parameters' def __init__(self, trait_attribute, h5file, name=None): # type: (Attr, H5File, str) -> None """ :param trait_attribute: A traited Equation attribute :param h5file: The parent H5file that contains this Accessor :param name: The name of the dataset in the h5 file. It defaults to the name of the associated traited attribute. If the traited attribute is not a member of a HasTraits then it has no name and you have to provide this parameter """ super(EquationScalar, self).__init__(trait_attribute, h5file, name)
[docs] def store(self, data): # type: (Equation) -> None data = self.trait_attribute._validate_set(None, data) eq_meta_dict = {self.KEY_TYPE: str(type(data).__name__), self.KEY_PARAMETERS: data.parameters} self.owner.storage_manager.set_metadata({self.field_name: json.dumps(eq_meta_dict)})
[docs] def load(self): # type: () -> Equation eq_meta_dict = json.loads(self.owner.storage_manager.get_metadata()[self.field_name]) if eq_meta_dict is None: return eq_meta_dict eq_type = eq_meta_dict[self.KEY_TYPE] eq_class = getattr(equations, eq_type) eq_instance = eq_class() parameters_dict = eq_meta_dict[self.KEY_PARAMETERS] eq_instance.parameters = parameters_dict return eq_instance
[docs]class Reference(Uuid): """ A reference to another h5 file Corresponds to a contained datatype """
[docs] def store(self, val): # type: (HasTraits) -> None """ The reference is stored as a gid in the metadata. :param val: a datatype or a uuid.UUID gid """ if val is None and not self.trait_attribute.required: # this is an optional reference and it is missing return if isinstance(val, HasTraits): val = val.gid if not isinstance(val, uuid.UUID): raise TypeError("expected uuid.UUId or HasTraits, got {}".format(type(val))) super(Reference, self).store(val)
[docs]class SparseMatrixMetaData(DataSetMetaData): """ Essential metadata for interpreting a sparse matrix stored in h5 """ def __init__(self, minimum, maximum, mean, format, dtype, shape): super(SparseMatrixMetaData, self).__init__(minimum, maximum, mean) self.dtype = dtype self.format = format self.shape = shape
[docs] @staticmethod def parse_shape(shapestr): if not shapestr or shapestr[0] != '(' or shapestr[-1] != ')': raise ValueError('can not parse shape "{}"'.format(shapestr)) frags = shapestr[1:-1].split(',') return tuple(int(e) for e in frags)
[docs] @classmethod def from_array(cls, mtx): return cls( minimum=mtx.data.min(), maximum=mtx.data.max(), mean=mtx.data.mean(), format=mtx.format, dtype=mtx.dtype, shape=mtx.shape, )
[docs] @classmethod def from_dict(cls, dikt): return cls( minimum=dikt['Minimum'], maximum=dikt['Maximum'], mean=dikt['Mean'], format=dikt['format'], dtype=numpy.dtype(dikt['dtype']), shape=cls.parse_shape(dikt['Shape']), )
[docs] def to_dict(self): return { 'Minimum': self.min, 'Maximum': self.max, 'Mean': self.mean, 'format': self.format, 'dtype': self.dtype.str, 'Shape': str(self.shape), }
[docs]class SparseMatrix(Accessor): """ Stores and loads a scipy.sparse csc or csr matrix in h5. """ constructors = {'csr': scipy.sparse.csr_matrix, 'csc': scipy.sparse.csc_matrix}
[docs] def store(self, mtx): # type: (scipy.sparse.spmatrix) -> None # noinspection PyProtectedMember mtx = self.trait_attribute._validate_set(None, mtx) if mtx is None: return if mtx.format not in self.constructors: raise ValueError('sparse format {} not supported'.format(mtx.format)) if not isinstance(mtx, scipy.sparse.spmatrix): raise TypeError("expected scipy.sparse.spmatrix, got {}".format(type(mtx))) self.owner.storage_manager.store_data( mtx.data, 'data', where=self.field_name ) self.owner.storage_manager.store_data( mtx.indptr, 'indptr', where=self.field_name ) self.owner.storage_manager.store_data( mtx.indices, 'indices', where=self.field_name ) self.owner.storage_manager.set_metadata( SparseMatrixMetaData.from_array(mtx).to_dict(), where=self.field_name )
[docs] def get_metadata(self): meta = self.owner.storage_manager.get_metadata(self.field_name) return SparseMatrixMetaData.from_dict(meta)
[docs] def load(self): meta = self.get_metadata() if meta.format not in self.constructors: raise ValueError('sparse format {} not supported'.format(meta.format)) constructor = self.constructors[meta.format] data = self.owner.storage_manager.get_data( 'data', where=self.field_name, ) indptr = self.owner.storage_manager.get_data( 'indptr', where=self.field_name, ) indices = self.owner.storage_manager.get_data( 'indices', where=self.field_name, ) mtx = constructor((data, indices, indptr), shape=meta.shape, dtype=meta.dtype) mtx.sort_indices() return mtx
[docs]class Json(Scalar): """ A python json like data structure accessor This works with simple Attr(list) Attr(dict) List(of=...) """ def __init__(self, trait_attribute, h5file, name=None, json_encoder=None, json_decoder=None): super(Json, self).__init__(trait_attribute, h5file, name) self.json_encoder = json_encoder self.json_decoder = json_decoder
[docs] def store(self, val): """ stores a json in the h5 metadata """ val = json.dumps(val, cls=self.json_encoder) self.owner.storage_manager.set_metadata({self.field_name: val})
[docs] def load(self): val = self.owner.storage_manager.get_metadata()[self.field_name] if self.json_decoder: return self.json_decoder().decode(val) return json.loads(val)
[docs]class JsonRange(Scalar): """ Stores and loads a Range in the form of a json in h5. """
[docs] def store(self, val): val = json.dumps(val.__dict__) self.owner.storage_manager.set_metadata({self.field_name: val})
[docs] def load(self): val = self.owner.storage_manager.get_metadata()[self.field_name] loaded_val = json.loads(val) range_items = list(loaded_val.values()) return Range(range_items[0], range_items[1], range_items[2])
[docs]class ReferenceList(Json):
[docs] def store(self, val): gids = [dt.gid.hex for dt in val] super(ReferenceList, self).store(gids)
[docs]class JsonFinal(Json): """ A python json like data structure accessor meant to be used with Final(dict) """
[docs] class StateVariablesEncoder(json.JSONEncoder):
[docs] def default(self, o): if isinstance(o, numpy.ndarray): o = o.tolist() return o
[docs] class StateVariablesDecoder(json.JSONDecoder): def __init__(self): json.JSONDecoder.__init__(self, object_hook=self.dict_array)
[docs] def dict_array(self, dictionary): dict_array = {} for k, v in dictionary.items(): dict_array.update({k: numpy.array(v)}) return dict_array
def __init__(self, trait_attribute, h5file, name=None): super(JsonFinal, self).__init__(trait_attribute, h5file, name, self.StateVariablesEncoder, self.StateVariablesDecoder)