# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
Implementation of differet BOLD signal models. Four different models are distinguished:
+ CBM_N: Classical BOLD Model Non-linear
+ CBM_L: Classical BOLD Model Linear
+ RBM_N: Revised BOLD Model Non-linear (default)
+ RBM_L: Revised BOLD Model Linear
``Classical`` means that the coefficients used to compute the BOLD signal are
derived as described in [Obata2004]_ . ``Revised`` coefficients are defined in
[Stephan2007]_
References:
.. [Stephan2007] Stephan KE, Weiskopf N, Drysdale PM, Robinson PA,
Friston KJ (2007) Comparing hemodynamic models with
DCM. NeuroImage 38: 387-401.
.. [Obata2004] Obata, T.; Liu, T. T.; Miller, K. L.; Luh, W. M.; Wong, E. C.; Frank, L. R. &
Buxton, R. B. (2004) **Discrepancies between BOLD and flow dynamics in primary and
supplementary motor areas: application of the balloon model to the
interpretation of BOLD transients.** Neuroimage, 21:144-153
.. moduleauthor:: Paula Sanz Leon <Paula@tvb.invalid>
"""
import numpy
import tvb.datatypes.time_series as time_series
from tvb.basic.neotraits.api import HasTraits, TVBEnum, Attr, NArray, Range, Float, EnumAttr
import tvb.simulator.integrators as integrators_module
[docs]class BoldModels(TVBEnum):
LINEAR = "linear"
NONLINEAR = "nonlinear"
[docs]class BalloonModel(HasTraits):
"""
A class for calculating the simulated BOLD signal given a TimeSeries
object of TVB and returning another TimeSeries object.
The haemodynamic model parameters based on constants for a 1.5 T scanner.
"""
# NOTE: a potential problem when the input is a TimeSeriesSurface.
# TODO: add an spatial averaging for TimeSeriesSurface.
time_series = Attr(
field_type=time_series.TimeSeries,
label="Time Series",
required=True,
doc="""The timeseries that represents the input neural activity""")
integrator = Attr(
field_type=integrators_module.Integrator,
label="Integration scheme",
default=integrators_module.HeunDeterministic,
required=True,
doc=""" A tvb.simulator.Integrator object which is an integration
scheme with supporting attributes such as integration step size and
noise specification for stochastic methods. It is used to compute the
time courses of the balloon model state variables.""")
bold_model = EnumAttr(
default=BoldModels.NONLINEAR,
label="Select BOLD model equations",
doc="""Select the set of equations for the BOLD model.""")
RBM = Attr(
field_type=bool,
label="Revised BOLD Model",
default=True,
required=True,
doc="""Select classical vs revised BOLD model (CBM or RBM).
Coefficients k1, k2 and k3 will be derived accordingly.""")
normalize_neural_input = Attr(
field_type=bool,
default=False,
required=True,
doc="""Set if the mean should be subtracted from the neural input.""")
neural_input_transformation = EnumAttr(
default=NeuralInputTransformations.NONE,
label="Neural input transformation",
doc=""" This represents the operation to perform on the state-variable(s) of
the model used to generate the input TimeSeries. ``none`` takes the
first state-variable as neural input; `` abs_diff`` is the absolute
value of the derivative (first order difference) of the first state variable;
``sum``: sum all the state-variables of the input TimeSeries.""")
tau_s = Float(
label=r":math:`\tau_s`",
default=1.54,
required=True,
doc="""Balloon model parameter. Time of signal decay (s)""")
tau_f = Float(
label=r":math:`\tau_f`",
default=1.44,
required=True,
doc=""" Balloon model parameter. Time of flow-dependent elimination or
feedback regulation (s). The average time blood take to traverse the
venous compartment. It is the ratio of resting blood volume (V0) to
resting blood flow (F0).""")
tau_o = Float(
label=r":math:`\tau_o`",
default=0.98,
required=True,
doc="""
Balloon model parameter. Haemodynamic transit time (s). The average
time blood take to traverse the venous compartment. It is the ratio
of resting blood volume (V0) to resting blood flow (F0).""")
alpha = Float(
label=r":math:`\tau_f`",
default=0.32,
required=True,
doc="""Balloon model parameter. Stiffness parameter. Grubb's exponent.""")
TE = Float(
label=":math:`TE`",
default=0.04,
required=True,
doc="""BOLD parameter. Echo Time""")
V0 = Float(
label=":math:`V_0`",
default=4.0,
required=True,
doc="""BOLD parameter. Resting blood volume fraction.""")
E0 = Float(
label=":math:`E_0`",
default=0.4,
required=True,
doc="""BOLD parameter. Resting oxygen extraction fraction.""")
epsilon = NArray(
label=":math:`\epsilon`",
default=numpy.array([0.5]),
domain=Range(lo=0.5, hi=2.0, step=0.25),
required=True,
doc=""" BOLD parameter. Ratio of intra- and extravascular signals. In principle this
parameter could be derived from empirical data and spatialized.""")
nu_0 = Float(
label=r":math:`\nu_0`",
default=40.3,
required=True,
doc="""BOLD parameter. Frequency offset at the outer surface of magnetized vessels (Hz).""")
r_0 = Float(
label=":math:`r_0`",
default=25.,
required=True,
doc=""" BOLD parameter. Slope r0 of intravascular relaxation rate (Hz). Only used for
``revised`` coefficients. """)
[docs] def evaluate(self):
"""
Calculate simulated BOLD signal
"""
cls_attr_name = self.__class__.__name__ + ".time_series"
# self.time_series.trait["data"].log_debug(owner=cls_attr_name)
# NOTE: Just using the first state variable, although in the Bold monitor
# input is the sum over the state-variables. Only time-series
# from basic monitors should be used as inputs.
neural_activity, t_int = self.input_transformation(self.time_series, self.neural_input_transformation)
input_shape = neural_activity.shape
result_shape = self.result_shape(input_shape)
self.log.debug("Result shape will be: %s" % str(result_shape))
balloon_nvar = 4
# NOTE: hard coded initial conditions
state = numpy.zeros((input_shape[0], balloon_nvar, input_shape[2], input_shape[3])) # s
state[0, 1, :] = 1. # f
state[0, 2, :] = 1. # v
state[0, 3, :] = 1. # q
# BOLD model coefficients
k1, k2, k3 = self.compute_derived_parameters()
# prepare integrator
self.integrator.dt = 1. / self.time_series.sample_rate # s
self.integrator.configure()
self.log.debug("Integration time step size will be: %s seconds" % str(self.integrator.dt))
scheme = self.integrator.scheme
# NOTE: the following variables are not used in this integration but
# required due to the way integrators scheme has been defined.
local_coupling = 0.0
stimulus = 0.0
# Do some checks:
if numpy.isnan(neural_activity).any():
self.log.warning("NaNs detected in the neural activity!!")
# normalise the time-series.
if self.normalize_neural_input:
neural_activity = neural_activity - neural_activity.mean(axis=0)[numpy.newaxis, :]
# solve equations
for step in range(1, t_int.shape[0]):
state[step, :] = scheme(state[step - 1, :], self.balloon_dfun,
neural_activity[step, :], local_coupling, stimulus)
if numpy.isnan(state[step, :]).any():
self.log.warning("NaNs detected...")
# NOTE: just for the sake of clarity, define the variables used in the BOLD model
s = state[:, 0, :]
f = state[:, 1, :]
v = state[:, 2, :]
q = state[:, 3, :]
# BOLD models
if self.bold_model.value == "nonlinear":
"""
Non-linear BOLD model equations.
Page 391. Eq. (13) top in [Stephan2007]_
"""
y_bold = numpy.array(self.V0 * (k1 * (1. - q) + k2 * (1. - q / v) + k3 * (1. - v)))
y_b = y_bold[:, numpy.newaxis, :, :]
self.log.debug("Max value: %s" % str(y_b.max()))
else:
"""
Linear BOLD model equations.
Page 391. Eq. (13) bottom in [Stephan2007]_
"""
y_bold = numpy.array(self.V0 * ((k1 + k2) * (1. - q) + (k3 - k2) * (1. - v)))
y_b = y_bold[:, numpy.newaxis, :, :]
bold_signal = time_series.TimeSeriesRegion(
data=y_b,
time=t_int,
sample_period=self.integrator.dt, # s
sample_period_unit='s')
return bold_signal
[docs] def compute_derived_parameters(self):
"""
Compute derived parameters :math:`k_1`, :math:`k_2` and :math:`k_3`.
"""
if not self.RBM:
"""
Classical BOLD Model Coefficients [Obata2004]_
Page 389 in [Stephan2007]_, Eq. (3)
"""
k1 = 7. * self.E0
k2 = 2. * self.E0
k3 = 1. - self.epsilon
else:
"""
Revised BOLD Model Coefficients.
Generalized BOLD signal model.
Page 400 in [Stephan2007]_, Eq. (12)
"""
k1 = 4.3 * self.nu_0 * self.E0 * self.TE
k2 = self.epsilon * self.r_0 * self.E0 * self.TE
k3 = 1 - self.epsilon
return k1, k2, k3
[docs] def balloon_dfun(self, state_variables, neural_input, local_coupling=0.0):
r"""
The Balloon model equations. See Eqs. (4-10) in [Stephan2007]_
.. math::
\frac{ds}{dt} &= x - \kappa\,s - \gamma \,(f-1) \\
\frac{df}{dt} &= s \\
\frac{dv}{dt} &= \frac{1}{\tau_o} \, (f - v^{1/\alpha})\\
\frac{dq}{dt} &= \frac{1}{\tau_o}(f \, \frac{1-(1-E_0)^{1/\alpha}}{E_0} - v^{&/\alpha} \frac{q}{v})\\
\kappa &= \frac{1}{\tau_s}\\
\gamma &= \frac{1}{\tau_f}
"""
s = state_variables[0, :]
f = state_variables[1, :]
v = state_variables[2, :]
q = state_variables[3, :]
x = neural_input[0, :]
ds = x - (1. / self.tau_s) * s - (1. / self.tau_f) * (f - 1)
df = s
dv = (1. / self.tau_o) * (f - v ** (1. / self.alpha))
dq = (1. / self.tau_o) * ((f * (1. - (1. - self.E0) ** (1. / f)) / self.E0) -
(v ** (1. / self.alpha)) * (q / v))
return numpy.array([ds, df, dv, dq])
[docs] def result_shape(self, input_shape):
"""Returns the shape of the main result of fmri balloon ..."""
result_shape = (input_shape[0], input_shape[1],
input_shape[2], input_shape[3])
return result_shape
[docs] def result_size(self, input_shape):
"""
Returns the storage size in Bytes of the main result of .
"""
result_size = numpy.sum(list(map(numpy.prod, self.result_shape(input_shape)))) * 8.0 # Bytes
return result_size
[docs] def extended_result_size(self, input_shape):
"""
Returns the storage size in Bytes of the extended result of the ....
That is, it includes storage of the evaluated ... attributes
such as ..., etc.
"""
extend_size = self.result_size(input_shape) # Currently no derived attributes.
return extend_size