# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
.. moduleauthor:: Ionel Ortelecan <ionel.ortelecan@codemart.ro>
.. moduleauthor:: Lia Domide <lia.domide@codemart.ro>
.. moduleauthor:: Bogdan Neacsa <bogdan.neacsa@codemart.ro>
"""
import json
import numpy
from tvb.adapters.visualizers.time_series import ABCSpaceDisplayer
from tvb.adapters.datatypes.h5.time_series_h5 import TimeSeriesH5
from tvb.adapters.datatypes.db.time_series import TimeSeriesIndex
from tvb.core.adapters.abcadapter import ABCAdapterForm
from tvb.core.adapters.abcdisplayer import URLGenerator
from tvb.core.adapters.exceptions import LaunchException
from tvb.core.neotraits.forms import TraitDataTypeSelectField
from tvb.core.neocom import h5
from tvb.core.neotraits.view_model import ViewModel, DataTypeGidAttr, replace_nan_values
from tvb.datatypes.time_series import TimeSeries
[docs]class EegMonitorModel(ViewModel):
input_data = DataTypeGidAttr(
linked_datatype=TimeSeries,
label='Input Data',
doc='Time series to display.'
)
data_2 = DataTypeGidAttr(
linked_datatype=TimeSeries,
required=False,
label='Input Data 2',
doc='Time series to display.'
)
data_3 = DataTypeGidAttr(
linked_datatype=TimeSeries,
required=False,
label='Input Data 3',
doc='Time series to display.'
)
[docs]class EegMonitor(ABCSpaceDisplayer):
"""
This viewer takes as inputs at least one ArrayWrapper and at most 3
ArrayWrappers, and returns the needed parameters for a 2D representation
of the values from these arrays, in EEG form. So far arrays of at most 3
dimensions are supported.
"""
has_nan = False
_ui_name = "Animated Time Series Visualizer"
_ui_subsection = "animated_timeseries"
page_size = 4000
preview_page_size = 250
current_page = 0
[docs] def get_required_memory_size(self, view_model):
# type: (EegMonitorModel) -> int
"""
Return the required memory to run this algorithm.
"""
return -1
@staticmethod
def _get_input_time_series(input_data, data_2=None, data_3=None, is_preview=False):
"""
Returns a list of the distinct time series to be viewed
Convert Original ArrayWrappers into a 2D list.
:param input_data: Time series to display
:type input_data: `TimeSeriesEEG`
:param data_2: additional input data
:param data_3: additional input data
"""
original_timeseries = [input_data]
error_sample = "The input TimeSeries have different sample periods. You cannot view them in the same time !"
if data_2 is not None and data_2.gid != input_data.gid and is_preview is False:
if data_2.sample_period != input_data.sample_period:
raise LaunchException(error_sample)
original_timeseries.append(data_2)
if (data_3 is not None and data_3.gid != input_data.gid
and (data_2 is None or data_2.gid != data_3.gid) and is_preview is False):
if data_3.sample_period != input_data.sample_period:
raise LaunchException(error_sample)
original_timeseries.append(data_3)
return original_timeseries
def _compute_ag_settings(self, original_timeseries, is_preview, graph_labels, no_of_channels, total_time_length,
points_visible, is_extended_view, measure_points_sel_gids):
# Compute distance between channels
step, translations, channels_per_set = self.compute_required_info(original_timeseries)
base_urls, page_size, total_pages, time_set_urls = self._get_data_set_urls(original_timeseries, is_preview)
return dict(channelsPerSet=channels_per_set,
channelLabels=graph_labels,
noOfChannels=no_of_channels,
translationStep=step,
normalizedSteps=translations,
nan_value_found=self.has_nan,
baseURLS=base_urls,
pageSize=page_size,
nrOfPages=total_pages,
timeSetPaths=time_set_urls,
totalLength=total_time_length,
number_of_visible_points=points_visible,
extended_view=is_extended_view,
measurePointsSelectionGIDs=measure_points_sel_gids)
[docs] def compute_parameters(self, input_data, data_2=None, data_3=None, is_preview=False,
is_extended_view=False, selected_dimensions=None):
"""
Start the JS visualizer, similar to EEG-lab
:param is_preview: Boolean True wne shown on Burst page
:param selected_dimensions: from GUI int
:param is_extended_view: Boolean when to display as dual-viewer
:param input_data: Time series to display
:type input_data: `TimeSeriesEEG`
:param data_2: additional input data
:param data_3: additional input data
:returns: the needed parameters for a 2D representation
:rtype: dict
:raises LaunchException: when at least two input data parameters are provided and they sample periods differ
"""
original_timeseries = self._get_input_time_series(input_data, data_2, data_3)
self.selected_dimensions = selected_dimensions or [0, 2]
# Hardcoded now 1st dimension is time
h5_timeseries = []
for timeseries in original_timeseries:
if timeseries is None:
continue
ts_h5 = h5.h5_file_for_index(timeseries)
assert isinstance(ts_h5, TimeSeriesH5)
h5_timeseries.append(ts_h5)
if not is_preview:
max_chunck_length = max([ts_h5.read_data_shape()[0] for ts_h5 in h5_timeseries])
else:
max_chunck_length = min(self.preview_page_size, h5_timeseries[0].read_data_shape()[0])
# compute how many elements will be visible on the screen
points_visible = min(max_chunck_length, 500)
(no_of_channels, ts_names, grouped_labels, total_time_length,
graph_labels, initial_selections, measure_points_selectionGIDs,
modes, state_vars) = self._pre_process(h5_timeseries)
# ts_names : a string representing the time series
# labels, modes, state_vars are maps ts_name -> list(...)
# The label values must reach the client in ascending ordered. ts_names preserves the
# order created by _pre_process
if is_preview:
total_time_length = max_chunck_length
ag_settings = self._compute_ag_settings(h5_timeseries, is_preview, graph_labels, no_of_channels,
total_time_length, points_visible, is_extended_view,
measure_points_selectionGIDs)
parameters = dict(title=self._get_sub_title(original_timeseries),
tsNames=ts_names,
groupedLabels=grouped_labels,
tsModes=modes,
tsStateVars=state_vars,
longestChannelLength=max_chunck_length,
label_x=self._get_label_x(original_timeseries[0]),
entities=h5_timeseries,
page_size=min(self.page_size, max_chunck_length),
number_of_visible_points=points_visible,
extended_view=is_extended_view,
initialSelection=initial_selections,
ag_settings=json.dumps(ag_settings))
for ts_h5 in h5_timeseries:
ts_h5.close()
return parameters
def _load_input_indexes(self, view_model):
main_time_series_index = self.load_entity_by_gid(view_model.input_data)
time_series_index2 = None
time_series_index3 = None
if view_model.data_2:
time_series_index2 = self.load_entity_by_gid(view_model.data_2)
if view_model.data_3:
time_series_index3 = self.load_entity_by_gid(view_model.data_3)
return main_time_series_index, time_series_index2, time_series_index3
[docs] def launch(self, view_model):
# type: (EegMonitorModel) -> dict
"""
Compute visualizer's page
"""
main_time_series_index, time_series_index2, time_series_index3 = self._load_input_indexes(view_model)
params = self.compute_parameters(main_time_series_index, time_series_index2, time_series_index3)
pages = dict(controlPage="eeg/controls", channelsPage="commons/channel_selector.html")
return self.build_display_result("eeg/view", params, pages=pages)
def _pre_process(self, timeseries_list):
"""From input, Compute no of lines and labels."""
multiple_inputs = len(timeseries_list) > 1
no_of_lines, max_length = 0, 0
modes, state_vars = {}, {}
# all these arrays are consistently indexed. At index idx they all refer to the same time series
initial_selections, measures_sel_gids = [], []
ts_names, graph_labels, grouped_labels = [], [], []
for idx, timeseries in enumerate(timeseries_list):
shape = timeseries.read_data_shape()
no_of_lines += shape[self.selected_dimensions[1]]
max_length = max(max_length, shape[0])
self._fill_graph_labels(timeseries, graph_labels, multiple_inputs, idx)
ts_name = timeseries.title.load()
ts_names.append(ts_name)
if multiple_inputs:
# for multiple inputs the default selections might be too big: select the first few
# warn: assumes that the selection values are a range
initial_selections.append(list(range(4)))
else:
initial_selections.append(timeseries.get_default_selection())
if isinstance(timeseries.get_measure_points_selection_gid(), str):
measures_sel_gids.append(timeseries.get_measure_points_selection_gid())
else:
measures_sel_gids.append(timeseries.get_measure_points_selection_gid().hex)
grouped_labels.append(self.get_grouped_space_labels(timeseries))
state_vars[ts_name] = timeseries.labels_dimensions.load().get(timeseries.labels_ordering.load()[1], [])
modes[ts_name] = list(range(shape[3]))
return (no_of_lines, ts_names, grouped_labels, max_length, graph_labels,
initial_selections, measures_sel_gids, modes, state_vars)
def _fill_graph_labels(self, timeseries, graph_labels, mult_inp, idx):
""" Fill graph labels in the graph_labels parameter """
shape = timeseries.read_data_shape()
space_labels = self.get_space_labels(timeseries)
for j in range(shape[self.selected_dimensions[1]]):
if space_labels:
if j >= len(space_labels):
# for surface time series get_space_labels will return labels up to a limit,
# not a label for each signal.
# to honor that behaviour we break the loop if we run out of labels.
# todo a robust cap on signals.
break
this_label = str(space_labels[j])
else:
this_label = "channel_" + str(j)
if mult_inp:
this_label = str(idx + 1) + '.' + this_label
graph_labels.append(this_label)
[docs] def compute_required_info(self, list_of_timeseries):
"""Compute average difference between Max and Min."""
# The values computed by this function will be serialized to json and passed to the client.
# The time series might be of numpy.float32 a data type that is not serializable.
# To overcome this we convert numpy scalars to python floats
step = []
translations = []
channels_per_set = []
for timeseries in list_of_timeseries:
data_shape = timeseries.read_data_shape()
resulting_shape = []
for idx, shape in enumerate(data_shape):
if idx in self.selected_dimensions:
resulting_shape.append(shape)
page_chunk_data = timeseries.read_data_page(self.current_page * self.page_size,
(self.current_page + 1) * self.page_size)
channels_per_set.append(int(resulting_shape[1]))
for idx in range(resulting_shape[1]):
self.has_nan = self.has_nan or replace_nan_values(page_chunk_data[:, idx])
array_max = numpy.max(page_chunk_data[:, idx])
array_min = numpy.min(page_chunk_data[:, idx])
translations.append(float((array_max + array_min) / 2))
if array_max == array_min:
array_max += 1
step.append(abs(array_max - array_min))
return float(max(step)), translations, channels_per_set
@staticmethod
def _get_sub_title(datatype_list):
""" Compute sub-title for current page"""
return "_".join(d.display_name for d in datatype_list)
@staticmethod
def _get_label_x(original_timeseries):
""" Compute the label displayed on the x axis """
return "Time(%s)" % original_timeseries.sample_period_unit
def _get_data_set_urls(self, list_of_timeseries, is_preview=False):
"""
Returns a list of lists. Each list contains the urls to the files
containing the data for a certain array wrapper.
"""
base_urls = []
time_set_urls = []
total_pages_set = []
if is_preview is False:
page_size = self.page_size
for timeseries in list_of_timeseries:
overall_shape = timeseries.read_data_shape()
total_pages = overall_shape[0] // self.page_size
if overall_shape[0] % self.page_size > 0:
total_pages += 1
timeline_urls = []
ts_gid = timeseries.gid.load().hex
for i in range(total_pages):
current_max_size = min((i + 1) * self.page_size, overall_shape[0]) - i * self.page_size
params = "current_page=" + str(i) + ";page_size=" + str(self.page_size) + \
";max_size=" + str(current_max_size)
timeline_urls.append(URLGenerator.build_h5_url(ts_gid, 'read_time_page', parameter=params))
base_urls.append(URLGenerator.build_base_h5_url(ts_gid))
time_set_urls.append(timeline_urls)
total_pages_set.append(total_pages)
else:
ts_gid = list_of_timeseries[0].gid.load().hex
base_urls.append(URLGenerator.build_base_h5_url(ts_gid))
total_pages_set.append(1)
page_size = self.preview_page_size
params = "current_page=0;page_size=" + str(self.preview_page_size) + ";max_size=" + \
str(min(self.preview_page_size, list_of_timeseries[0].read_data_shape()[0]))
time_set_urls.append([URLGenerator.build_h5_url(ts_gid, 'read_time_page', parameter=params)])
return base_urls, page_size, total_pages_set, time_set_urls