Source code for tvb.adapters.uploaders.gifti_timeseries_importer
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
.. moduleauthor:: Calin Pavel <calin.pavel@codemart.ro>
"""
import json
import uuid
from tvb.core.entities.filters.chain import FilterChain
from tvb.core.adapters.abcuploader import ABCUploader, ABCUploaderForm
from tvb.core.adapters.exceptions import LaunchException, ParseException
from tvb.adapters.uploaders.gifti.parser import GIFTIParser
from tvb.basic.logger.builder import get_logger
from tvb.adapters.datatypes.h5.time_series_h5 import TimeSeriesSurfaceH5
from tvb.adapters.datatypes.db.time_series import TimeSeriesSurfaceIndex
from tvb.core.neotraits.forms import TraitUploadField, TraitDataTypeSelectField
from tvb.core.neotraits.db import prepare_array_shape_meta
from tvb.core.neotraits.uploader_view_model import UploaderViewModel
from tvb.core.neotraits.view_model import Str, DataTypeGidAttr
from tvb.datatypes.surfaces import Surface
[docs]class GIFTITimeSeriesImporterModel(UploaderViewModel):
data_file = Str(
label='Please select file to import (.gii)'
)
surface = DataTypeGidAttr(
linked_datatype=Surface,
label='Brain Surface',
doc='The Brain Surface used to generate imported TimeSeries.'
)
[docs]class GIFTITimeSeriesImporter(ABCUploader):
"""
This importer is responsible for import of a TimeSeries from GIFTI format (XML file)
and store them in TVB.
"""
_ui_name = "TimeSeries GIFTI"
_ui_subsection = "gifti_timeseries_importer"
_ui_description = "Import TimeSeries from GIFTI"
[docs] def get_output(self):
return [TimeSeriesSurfaceIndex]
[docs] def launch(self, view_model):
# type: (GIFTITimeSeriesImporterModel) -> [TimeSeriesSurfaceIndex]
"""
Execute import operations:
"""
if view_model.surface is None:
raise LaunchException("No surface selected. Please initiate upload again and select a brain surface.")
parser = GIFTIParser(self.operation_id)
try:
partial_time_series, gifti_data_arrays = parser.parse(view_model.data_file)
ts_idx = TimeSeriesSurfaceIndex()
ts_h5_path = self.path_for(TimeSeriesSurfaceH5, ts_idx.gid)
ts_h5 = TimeSeriesSurfaceH5(ts_h5_path)
# todo : make sure that write_time_slice is not required here
for data_array in gifti_data_arrays:
ts_h5.write_data_slice([data_array.data])
ts_h5.store(partial_time_series, scalars_only=True, store_references=False)
ts_h5.gid.store(uuid.UUID(ts_idx.gid))
ts_data_shape = ts_h5.read_data_shape()
surface = self.load_entity_by_gid(view_model.surface)
if surface.number_of_vertices != ts_data_shape[1]:
msg = "Imported time series doesn't have values for all surface vertices. Surface has %d vertices " \
"while time series has %d values." % (surface.number_of_vertices, ts_data_shape[1])
raise LaunchException(msg)
else:
ts_h5.surface.store(uuid.UUID(surface.gid))
ts_idx.fk_surface_gid = surface.gid
ts_h5.close()
ts_idx.sample_period_unit = partial_time_series.sample_period_unit
ts_idx.sample_period = partial_time_series.sample_period
ts_idx.sample_rate = partial_time_series.sample_rate
ts_idx.labels_ordering = json.dumps(partial_time_series.labels_ordering)
ts_idx.labels_dimensions = json.dumps(partial_time_series.labels_dimensions)
ts_idx.data_ndim = len(ts_data_shape)
ts_idx.data_length_1d, ts_idx.data_length_2d, ts_idx.data_length_3d, ts_idx.data_length_4d = prepare_array_shape_meta(
ts_data_shape)
return [ts_idx]
except ParseException as excep:
logger = get_logger(__name__)
logger.exception(excep)
raise LaunchException(excep)