# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
"""
.. moduleauthor:: David Bacter <david.bacter@codemart.ro>
.. moduleauthor:: Robert Vincze <robert.vincze@codemart.ro>
"""
import os
import json
import numpy
from tvb.adapters.datatypes.db.region_mapping import RegionVolumeMappingIndex
from tvb.adapters.datatypes.db.structural import StructuralMRIIndex
from tvb.adapters.datatypes.db.time_series import TimeSeriesVolumeIndex
from tvb.adapters.datatypes.db.volume import VolumeIndex
from tvb.core.adapters.exceptions import LaunchException
from tvb.core.entities.storage import dao
from tvb.core.neotraits.forms import TraitUploadField
from tvb.core.neotraits.uploader_view_model import UploaderViewModel
from tvb.core.neotraits.view_model import Str
from tvb.core.adapters.abcuploader import ABCUploaderForm, ABCUploader
from tvb.datatypes.connectivity import Connectivity
from tvb.datatypes.graph import CorrelationCoefficients
from tvb.datatypes.surfaces import CorticalSurface
from tvb.datatypes.time_series import TimeSeriesRegion
[docs]class BIDSImporterModel(UploaderViewModel):
uploaded = Str(
label='BIDS derivatives dataset (zip)',
doc="data compatible with BIDS Extension Proposal 032 (BEP032): BIDS Computational Model Specification"
)
[docs]class BIDSImporter(ABCUploader):
_ui_name = "BIDS Derivatives Importer"
_ui_subsection = "bids_importer"
_ui_description = "Import a dataset in BIDS format"
SUBJECT_PREFIX = "sub"
NET_TOKEN = "net"
COORDS_TOKEN = "coord"
SPATIAL_TOKEN = "spatial"
TS_TOKEN = "ts"
TSV_EXTENSION = ".tsv"
JSON_EXTENSION = ".json"
WEIGHTS_FILE = "weights" + TSV_EXTENSION
WEIGHTS_JSON_FILE = "weights" + JSON_EXTENSION
DISTANCES_FILE = "distances" + TSV_EXTENSION
VERTICES_FILE = "vertices" + TSV_EXTENSION
NORMALS_FILE = "normals" + TSV_EXTENSION
TRIANGLES_FILE = "faces" + TSV_EXTENSION
COORDS_ROWS_KEY = "CoordsRows"
[docs] def get_output(self):
return [VolumeIndex, StructuralMRIIndex, TimeSeriesVolumeIndex, RegionVolumeMappingIndex]
[docs] def launch(self, view_model):
"""
Import a dataset in BIDS format
"""
if view_model.uploaded is None:
raise LaunchException("Please select ZIP file which contains data to import")
files = self.storage_interface.unpack_zip(view_model.uploaded, self.get_storage_path())
subject_folders = set()
# First we find subject parent folders
for file_name in files:
if self.__is_subject_folder(file_name):
subject_folders.add(file_name)
if len(subject_folders) == 0:
# Try to determine subject folders in a different manner
for file_name in files:
possible_subject_folder = os.path.dirname(os.path.dirname(file_name))
if self.__is_subject_folder(possible_subject_folder):
subject_folders.add(possible_subject_folder)
connectivity = None
ts_dict = None
for subject_folder in subject_folders:
net_folder = os.path.join(subject_folder, self.NET_TOKEN)
if os.path.exists(net_folder):
connectivity = self.__build_connectivity(net_folder)
coords_folder = os.path.join(subject_folder, self.COORDS_TOKEN)
if os.path.exists(coords_folder):
self.__build_surface(coords_folder)
ts_folder = os.path.join(subject_folder, self.TS_TOKEN)
if os.path.exists(ts_folder):
ts_dict = self.__build_time_series(ts_folder, connectivity)
spatial_folder = os.path.join(subject_folder, self.SPATIAL_TOKEN)
if os.path.exists(spatial_folder):
self.__build_functional_connectivity(spatial_folder, ts_dict)
def __is_subject_folder(self, file_name):
return os.path.basename(file_name).startswith(self.SUBJECT_PREFIX) and os.path.isdir(file_name)
def __build_connectivity(self, net_folder):
weights_matrix = None
tracts_matrix = None
centres = None
labels_vector = None
for net_file_name in os.listdir(net_folder):
net_file_path = os.path.join(net_folder, net_file_name)
if net_file_name.endswith(self.WEIGHTS_FILE):
weights_matrix = self.read_list_data(net_file_path)
elif net_file_name.endswith(self.DISTANCES_FILE):
tracts_matrix = self.read_list_data(net_file_path)
elif net_file_name.endswith(self.WEIGHTS_JSON_FILE):
with open(net_file_path) as json_file:
json_dict = json.load(json_file)
labels_path = json_dict[self.COORDS_ROWS_KEY][0]
centres_path = json_dict[self.COORDS_ROWS_KEY][1]
dir_path = os.path.dirname(net_file_path)
labels_path = os.path.join(dir_path, labels_path).replace(self.JSON_EXTENSION, self.TSV_EXTENSION)
centres_path = os.path.join(dir_path, centres_path).replace(self.JSON_EXTENSION, self.TSV_EXTENSION)
centres = self.read_list_data(centres_path)
labels_vector = self.read_list_data(labels_path, dtype=numpy.str_, usecols=[0])
connectivity = Connectivity()
expected_number_of_nodes = len(centres)
connectivity.set_centres(centres, expected_number_of_nodes)
connectivity.set_region_labels(labels_vector)
connectivity.set_weights(weights_matrix, expected_number_of_nodes)
connectivity.set_tract_lengths(tracts_matrix, expected_number_of_nodes)
connectivity.configure()
connectivity_index = self.store_complete(connectivity)
self._capture_operation_results([connectivity_index])
dao.store_entity(connectivity_index)
return connectivity
def __build_surface(self, surface_folder):
vertices = None
normals = None
triangles = None
for surface_file_name in os.listdir(surface_folder):
surface_file_path = os.path.join(surface_folder, surface_file_name)
if surface_file_name.endswith(self.VERTICES_FILE):
vertices = self.read_list_data(surface_file_path)
elif surface_file_name.endswith(self.NORMALS_FILE):
normals = self.read_list_data(surface_file_path)
elif surface_file_name.endswith(self.TRIANGLES_FILE):
triangles = self.read_list_data(surface_file_path, dtype=numpy.int64)
surface = CorticalSurface()
surface.set_scaled_vertices(vertices)
surface.normals = normals
surface.zero_based_triangles = False
surface.triangles = triangles - 1
surface.hemisphere_mask = numpy.array([False] * len(vertices))
surface.compute_triangle_normals()
surface.valid_for_simulations = True
validation_result = surface.validate()
if validation_result.warnings:
self.add_operation_additional_info(validation_result.summary())
surface.configure()
surface_index = self.store_complete(surface)
self._capture_operation_results([surface_index])
dao.store_entity(surface_index)
return surface
def __build_time_series(self, ts_folder, connectivity):
tsv_ts_files = filter(lambda x: x.endswith(self.TSV_EXTENSION), os.listdir(ts_folder))
ts_dict = {}
for tsv_ts_file_name in tsv_ts_files:
tsv_ts_file = os.path.join(ts_folder, tsv_ts_file_name)
ts_array_data = self.read_list_data(tsv_ts_file)
ts_array_data = ts_array_data.reshape((len(ts_array_data), 1, len(ts_array_data[0]), 1))
json_ts_file = tsv_ts_file.replace(self.TSV_EXTENSION, self.JSON_EXTENSION)
with open(json_ts_file) as json_ts:
ts_time_file = json.load(json_ts)[self.COORDS_ROWS_KEY][0]
dir_path = os.path.dirname(json_ts_file)
ts_time_file = os.path.join(dir_path, ts_time_file).replace(self.JSON_EXTENSION, self.TSV_EXTENSION)
ts_times_data = self.read_list_data(ts_time_file)
ts = TimeSeriesRegion()
ts.data = ts_array_data
ts.time = ts_times_data
ts.connectivity = connectivity
self.generic_attributes.user_tag_1 = tsv_ts_file_name
ts.configure()
ts_index = self.store_complete(ts, self.generic_attributes)
ts_index.fixed_generic_attributes = True
self._capture_operation_results([ts_index])
dao.store_entity(ts_index)
ts_dict[os.path.basename(tsv_ts_file)] = ts
return ts_dict
def __build_functional_connectivity(self, spatial_folder, ts_dict):
tsv_spatial_files = filter(lambda x: x.endswith(self.TSV_EXTENSION), os.listdir(spatial_folder))
for tsv_spatial_file_name in tsv_spatial_files:
tsv_spatial_file = os.path.join(spatial_folder, tsv_spatial_file_name)
fc_data = self.read_list_data(tsv_spatial_file)
fc_data = fc_data.reshape((fc_data.shape[0], fc_data.shape[1], 1, 1))
pearson_correlation = CorrelationCoefficients()
pearson_correlation.array_data = fc_data
name_key = tsv_spatial_file_name.replace('sim_fc', '').replace('emp_fc', '').replace('.tsv', '')
for ts_file_name, ts in ts_dict.items():
if name_key in ts_file_name:
pearson_correlation.source = ts
break
self.generic_attributes.user_tag_1 = tsv_spatial_file_name
pearson_correlation.configure()
pearson_correlation_index = self.store_complete(pearson_correlation, self.generic_attributes)
pearson_correlation_index.fixed_generic_attributes = True
self._capture_operation_results([pearson_correlation_index])
dao.store_entity(pearson_correlation_index)